
Refined Definitional Trees and Prolog
Implementations of Narrowing

Pascual Julián Iranzo1

Departamento de Informática
Universidad de Castilla–La Mancha

Ciudad Real, Spain
Pascual.Julian@uclm.es

Abstract. This paper describes how high level implementations of (need-
ed) narrowing into Prolog can be improved by introducing a refined repre-
sentation of definitional trees that handles properly the knowledge about
the inductive positions of a pattern. We define some generic algorithms
that allow us to transform a functional logic program into a set of Prolog
clauses which incorporates some refinements that are obtained by ad hoc
artifices in other similar implementations of functional logic languages.
We also present and discuss the advantages of our proposal by means of
some simple examples.
Keywords: Functional logic programming, narrowing strategies, imple-
mentation of functional logic languages, program transformation.

1 Introduction

Functional logic programming [12] aims to implement programming languages
that integrate the best features of both functional programming and logic pro-
gramming. Most of the approaches to the integration of functional and logic
languages consider term rewriting systems as programs and some narrowing
strategy as complete operational mechanism. Laziness is a valuable feature of
functional logic languages, since it increases the expressive power of this kind
of languages: it supports computations with infinite data structures and a mod-
ular programming style. Among the different lazy narrowing strategies, needed
narrowing [7] has been postulated optimal from several points of view: i) it is
correct and complete, with regard to strict equations and constructor substi-
tutions answers, for the class of inductively sequential programs (see, forward,
Definition 2); ii) it computes minimal length derivations, if common variables
are shared; and iii) no redundant answers are obtained. Some of these optimal-
ity properties have also been established for a broader class of term rewriting
systems defining non–deterministic functions [4]. Needed narrowing addresses
1 Supported by CICYT TIC 2001-2705-C03-01, Acción Integrada Hispano-Italiana

HI2000-0161, Acción Integrada Hispano-Alemana HA2001-0059, and the Valencian
Research Council under grant GV01-424.

computations by means of some structures, namely definitional trees [2], which
contain all the information about the program rules. These structures allow us
to select a position of the term which is being evaluated and this position points
out to a reducible subterm that is “unavoidable” to reduce in order to obtain the
result of the computation. It is accepted that the framework for declarative pro-
graming based on non–deterministic lazy functions of [17] also uses definitional
trees as part of its computational mechanism. In recent years, a great effort
has been done to provide the integrated languages with high level implementa-
tions of this computational model into Prolog (see for instance [3, 8, 13, 15] and
[18]). Most of these implementation systems mainly rely on a two-phase trans-
formation procedure that consists of: a suitable representation structure for the
definitional trees associated with a functional logic program; and an algorithm
that takes the above representation of definitional trees as an input parameter
and translates it into a set of Prolog clauses able to simulate the narrowing
strategy being implemented.

This paper investigates how a refined representation of definitional trees can
introduce improvements in the quality of the code generated by the transforma-
tion scheme we have just described.

The paper is organized as follows: Section 2 recalls some basic notions we
use in the rest of the sections. In Section 3 we describe a refined representation
of definitional trees and we give an algorithm for building them in the style of
[14]. Section 4 discusses how to translate functional logic programs into Pro-
log, taking advantage of the new representation of definitional trees to improve
(needed) narrowing implementations. Section 5 presents some experiments that
show the effectiveness of our proposal. Section 6 contains our conclusions. Finally
we briefly discuss the lines of future work.

2 Preliminaries

We consider first order expressions or terms built from symbols of the set of
variables X and the set of function symbols F in the usual way. The set of terms
is denoted by T (F ,X). We sometimes write f/n ∈ F to denote that f is a
n–ary function symbol. If t is a term different from a variable, Root(t) is the
function symbol heading t, also called the root symbol of t. A term is linear if
it does not contain multiple occurrences of the same variable. Var(o) is the set
of variables occurring in the syntactic object o. We write on for the sequence of
objects o1, . . . , on.

A substitution σ is a mapping from the set of variables to the set of terms,
with finite domain Dom(σ) = {x ∈ X | σ(x) 6= x}. We denote the identity
substitution by id. We define the composition of two substitutions σ and θ,
denoted σ ◦ θ as usual: σ ◦ θ(x) = σ̂(θ(x)), where σ̂ is the extension of σ to the
domain of the terms. A renaming is a substitution ρ such that there exists the
inverse substitution ρ−1 and ρ ◦ ρ−1 = ρ−1 ◦ ρ = id.

A term t is more general than s (or s is an instance of t), in symbols t ≤ s,
if (∃σ) s = σ(t). Two terms t and t′ are variants if there exists a renaming ρ

2

such that t′ = ρ(t). We say that t is strictly more general than s, denoted t < s,
if t ≤ s and t and s are not variants. The quasi–order relation “≤” on terms is
often called subsumption order and “<” is called strict subsumption order.

Positions of a term t (also called occurrences) are represented by sequences
of natural numbers used to address subterms of t. The concatenation of the
sequences p and w is denoted by p.w. Two positions p and p′ of t are comparable
if (∃w) p′ = p.w or p = p′.w, otherwise are disjoint positions. Given a position
p of t, t|p denotes the subterm of t at position p and t[s]p denotes the result of
replacing the subterm t|p by the term s. Let pn be a sequence of disjoint positions
of a term t, t[s1]p1 . . . [sn]pn denotes the result of simultaneously replacing each
subterm t|pi by the term si, with i ∈ {1, . . . , n}.

2.1 Term rewriting systems

We limit the discussion to unconditional term rewriting systems1. A rewrite rule
is a pair l→ r with l, r ∈ T (F ,X), l 6∈ X , and Var(r) ⊆ Var(l). The terms l and
r are called the left–hand side (lhs) and right–hand side (rhs) of the rewrite rule,
respectively. A term rewriting system (TRS) R is a finite set of rewrite rules.

We are specially interested in TRSs whose associate signature F can be
partitioned into two disjoint sets F = C]D where D = {Root(l) | (l→ r) ∈ R}
and C = F \D. Symbols in C are called constructors and symbols in D are called
defined functions or operations. Terms built from symbols of the set of variables
X and the set of constructors C are called constructor terms. A pattern is a term
of the form f(dn) where f/n ∈ D and dn are constructor terms. A term f(xn),
where xn are different variables, is called generic pattern. A TRS is said to be
constructor–based (CB) if the lhs of its rules are patterns. For CB TRSs, a term
t is a head normal form (hnf) if t is a variable or Root(t) ∈ C.

A TRS is said to be left–linear if for each rule l → r in the TRS, the lhs l
is a linear term. We say that a TRS is non–ambiguous or non–overlapping if it
does not contain critical pairs (see [10] for a standard definition of critical pair).
Left–linear and non–ambiguous TRSs are called orthogonal TRSs.

Inductively sequential TRSs are a proper subclass of CB orthogonal TRSs.
The definition of this class of programs make use of the notion of definitional tree.
For the sake of simplicity and because further complications are irrelevant for our
study, in the following definition, we ignore the exempt nodes that appear in the
original definition of [2] and also the or–nodes of [15] used in the implementation
of Curry [14]. Note also, that or–nodes lead to parallel definitional trees and thus
out of the class of inductively sequential systems.

Definition 1. [Partial definitional tree]
Given a CB TRS R, P is a partial definitional tree with pattern π if and only
if one of the following cases hold:

1. P = rule(π, l → r), where π is a pattern and l → r is a rewrite rule in R
such that π is a variant of l.

1 This is not a true limitation for the expressiveness of a programming language re-
laying on this class of term rewriting systems [5].

3

hhhhhhhh
 AA

f(X1 , X2, X3)

f(a, b,X3) f(c, b,X3)

f(b, a, c)

f(a, X2 , X3) f(b, X2 , X3) f(c, X2 , X3)

f(b, a, X3)

Fig. 1. Definitional tree for the function “f”of Example 1

2. P = branch(π, o,Pk), where π is a pattern, o is a variable position of π
(called inductive position), ck are different constructors, for some k > 0, and
for all i ∈ {1, . . . , k}, Pi is a partial definitional tree with pattern π[ci(xn)]o,
where n is the arity of ci and xn are new variables.

From a declarative point of view, a partial definitional tree P can be seen as
a set of linear patterns partially ordered by the strict subsumption order “<”
[4]. Given a defined function f/n, a definitional tree of f is a partial definitional
tree whose pattern is a generic pattern and its leaves contain variants of all the
rewrite rules defining f .

Example 1. Given the rules defining the function f/3

R1 : f(a, b,X)→ r1, R2 : f(b, a, c)→ r2, R3 : f(c, b,X)→ r3.

a definitional tree of f is:

branch(f(X1, X2, X3), 1,
branch(f(a,X2, X3), 2, rule(f(a, b,X3), R1)),
branch(f(b,X2, X3), 2, branch(f(b, a,X3), 2, rule(f(b, a, c), R2))),
branch(f(c,X2, X3), 2, rule(f(c, b,X3), R3)))

Note that there can be more than one definitional tree for a defined function. It is
often convenient and simplifies understanding to provide a graphic representation
of definitional trees, where each node is marked with a pattern and the inductive
position in branches is surrounded by a box. Figure 1 illustrates this concept.

Definition 2. [Inductively Sequential TRS]
A defined function f is called inductively sequential if it has a definitional tree.
A rewrite system R is called inductively sequential if all its defined functions are
inductively sequential.

In this paper we are mainly interested in inductively sequential TRSs (or proper
subclasses of them) which are called programs.

2.2 Definitional trees and Narrowing Implementations into Prolog

Most of the relevant implementations of functional logic languages, which use
needed narrowing as operational mechanism, are based on the compilation of the

4

programs written in these languages into Prolog [8, 13, 15, 16]. These implemen-
tation systems may be thought as a translation process that essentially consists
in the following:

1. An algorithm to transform the program rules in a functional logic program
into a set of definitional trees (See [15] and [14] for some of those algorithms).

2. An algorithm that takes the definitional trees as an input parameter and
visits their nodes, generating a Prolog clause for each visited node. Since
definitional trees contain all the information about the original program as
well as information to guide the (optimal) pattern matching process during
the evaluation of expressions, the set of generated Prolog clauses is able to
simulate the intended narrowing strategy being implemented.

In the case of functional logic programs with a needed narrowing semantics, a
generic algorithm for the translation of definitional trees into a set of clauses is
given in [13]. When we apply that algorithm to the definitional tree of function
f in Example 1, we obtain the following set of Prolog clauses:

% Clause for the root node: it exploits the first inductive position

f(X1, X2, X3, H) :- hnf(X1, HX1), f_1(HX1, X2, X3, H).

% Clauses for the remainder nodes:

f_1(a, X2, X3, H):- hnf(X2, HX2), f_1_a_2(HX2, X3, H).

f_1_a_2(b, X3, H):- hnf(r1, H).

f_1(b, X2, X3, H):- hnf(X2, HX2), f_1_b_2(HX2, X3, H).

f_1_b_2(a, X3, H):- hnf(X3, HX3), f_1_b_2_a_3(HX3, H).

f_1_b_2_a_3(c, H):- hnf(r2, H).

f_1(c, X2, X3, H):- hnf(X2, HX2), f_1_c_2(HX2, X3, H).

f_1_c_2(b, X3, H):- hnf(r3, H).

where hnf(T, H) is a predicate that is true when H is the hnf of a term T. For
this example, the clauses defining the predicate hnf are:

% Evaluation to head normal form (hnf).

hnf(T, T) :- var(T), !.

hnf(f(X1, X2, X3), H) :- !, f(X1, X2, X3, H).

hnf(T, T). % otherwise the term T is a hnf;

The meaning of these set of clauses is very easy to understand. For evaluating
a term t = f(t1, t2, t3) to a hnf, first, it is necessary to evaluate (to a hnf) the
substerms of t at the inductive positions of the patterns in the definitional tree
associated with f (in the order dictated by that definitional tree — see Figure 1).
Hence, for our example: we compute the hnf of t1 and then the hnf of t2; if b is
the hnf of t1 and a is the hnf of t2, we have to compute the hnf of t3; if the hnf
of t3 is c then the hnf of t will be the hnf of r2 else the computation fails (see the
sixth clause). On the other hand, if the hnf of t1 is a or c it suffices to evaluate
t2 to a hnf, disregarding t3, in order to obtain the final value. This evaluation
mechanism conforms with the needed narrowing strategy of [7], as it has been
formally demonstrated in [1].

5

hhhhhhhh
 AA

f(X1, X2, X3)

f(a, b,X3) f(b, a, X3) f(c, b,X3)

f(b, a, c)
Deterministic
(sub)branch

Fig. 2. Refined definitional tree for the function “f”of Example 1

3 A Refined Representation of Definitional Trees

As we have just seen, building definitional trees is the first step of the compi-
lation process in high level implementations of needed narrowing into Prolog.
Therefore, providing a suitable representation structure for the definitional trees
associated with a functional logic program may be an important task in or-
der to improve those systems. In this section we give a refined representation
of definitional trees that saves memory allocation and is the basis for further
improvements.

It is noteworthy that the function f of Example 1 has two definitional trees:
the one depicted in Figure 1 and a second one obtained by exploiting position 2 of
the generic pattern f(X1, X2, X3). Hence, this generic pattern has two inductive
positions. We can take advantage of this situation if we “simultaneously” exploit
these two positions to obtain the definitional tree depicted in the Figure 2. This
new representation cuts the number of nodes of the definitional tree from eight
to five nodes. Note also that this kind of representation reduces the number
of possible definitional trees associated to a function. Actually, using the new
representation, there is only one definitional tree for f .

The main idea of the refinement is as follows: when a pattern has several
inductive positions, exploit them altogether. Therefore we need a criterion to
detect inductive positions. This criterion exists and it is based on the concept of
uniformly demanded position of [15].

Definition 3. [Uniformly demanded position]
Given a pattern π and a TRS R, Let be Rπ = {l → r|(l → r) ∈ R ∧ π ≤ l}.
A variable position p of the pattern π is said to be: (i) demanded by a lhs l of
a rule in Rπ if Root(l|p) ∈ C. (ii) uniformly demanded by Rπ if p is demanded
for all lhs in Rπ.

We write UDPos(π) to denote the set of uniformly demanded positions of the
pattern π. The following proposition establishes a necessary condition for a po-
sition of a pattern to be an inductive position.

Proposition 1. Let R be an inductively sequential TRS and let π be the pattern
of a branch node of a definitional tree P of a function defined in R. If o is an
inductive position of π then o is uniformly demanded by Rπ.

6

Proof. We proceed by contradiction. Assume o is not uniformly demanded by
Rπ. Hence, there must exist some (l → r) ∈ Rπ such that Root(l|o) = c ∈ C,
and some (l′ → r′) ∈ Rπ such that l′|o ∈ X . Since o is the inductive position
of the branch node whose pattern is π, by definition of definitional tree, π <
π[c(xn)]o ≤ l and π ≤ l′. Therefore it is impossible to built a partial definitional
tree with leaves l and l′ by exploiting the position o, which contradicts the
hypothesis that o is an inductive position.

Hence, the concept of uniformly demanded position and Proposition 1 give us
a syntactic criterion to detect if a variable position of a pattern is an inductive
position or not and, therefore, a guideline to built a definitional tree: (i) Given
a branch node, select a uniformly demanded position of its pattern; fix it as
an inductive position of the branch node and generate the corresponding child
nodes. (ii) If the node doesn’t have uniformly demanded positions then there two
possibilities: the node is a leaf node, if it is a variant of a lhs of the considered
TRS, or it is a “failure” node, and it is impossible to build the definitional tree.
The following algorithm, in the style of [14], uses this scheme to build a refined
partial definitional tree rpdt(π,Rπ) for a pattern π and rules Rπ = {l → r |
(l→ r) ∈ R ∧ π ≤ l}:

1. If UDPos(π) = ∅ and there is only one rule (l→ r) ∈ Rπ and a renaming ρ
such that π = ρ(l):

rpdt(π,Rπ) = rule(π, ρ(l)→ ρ(r));

2. If UDPos(π) 6= ∅ and for all (ci1 , . . . , cim) ∈ Cπ, Pi = rpdt(πi,Rπi) 6= fail:

rpdt(π,Rπ) = branch(π, om,Pk);

where om is the sequence of uniformly demanded positions in UDPos(π),
Cπ = {(ci1 , . . . , cim)|(li → ri) ∈ Rπ ∧ Root(li|o1) = ci1 ∧ . . . ∧ Root(li|om) =
cim}, k = |Cπ| > 0, πi = π[ci1(xni1)]o1 . . . [cim(xnim)]om and xni1 , . . . , xnim
are new variables.

3. Otherwise, rpdt(π,Rπ) = fail.

Given an inductively sequential TRS R and a n–ary defined function f in R,
the definitional tree of f is rdt(f,R) = rpdt(π0,Rπ0) where π0 = f(xn). Note
that, for an algorithm like the one described in [14] the selection of the inductive
positions of the pattern π is non–deterministic, if UDPos(π) 6= ∅. Therefore, it is
possible to build different definitional trees for an inductively sequential function,
depending on the inductive position which is selected. On the contrary, our al-
gorithm deterministically produces a single definitional tree for each inductively
sequential function. Note also that it matches the more informal algorithm that
appears in [14] when, for each branch node, there is only one inductive position.

We illustrate the previous algorithm and last remarks by means of a new
example.

Example 2. Given the rules defining the function f/2

R1 : f(0, 0)→ 0, R2 : f(s(X), 0)→ s(0), R3 : f(s(X), s(s(Y)))→ f(X,Y).

7

hhhhhhhh
 AA

f(X1, X2)

f(0, 0) f(s(X3), 0) f(s(X3), s(X4))

f(s(X3), s(s(X5)))

Fig. 3. Refined definitional tree for the function “f”of Example 2

the last algorithm builds the following definitional tree for f :

branch(f(X1, X2), (1, 2),
rule(f(0, 0), R1),
rule(f(s(X3), 0), R2),
branch(f(s(X3), s(X4)), (2.1), rule(f(s(X3), s(s(X5))), R3))

which is depicted in Figure 3. The algorithm for generating definitional trees of
[14] may build two definitional trees for f (depending on whether position 1 or
position 2 is selected as the inductive position of the generic pattern f(X1, X2)).
Both of these trees have seven nodes, while the new representation of Figure 3
reduces the number of nodes of the definitional tree to five nodes.

As it has been proposed in [8], it is possible to obtain a simpler translation
scheme of functional logic programs into Prolog if definitional trees are first
compiled into case expressions. That is, functions are defined by only one rule
where the lhs is a generic pattern and the rhs contains case expresions to specify
the pattern matching of actual arguments. The use of case expressions doesn’t
invalidate our argumentation. Thus, we can transform the definitional tree of
Example 2 in the following case expression:

f(X1, X2) = case (X1, X2) of
(0, 0) → 0
(s(X3), 0) → s(0)
(s(X3), s(X4))→ case (X4) of

s(X5)→ f(X3, X5)

A case expression, like this, will be evaluated by reducing a tuple of arguments
to their hnf and matching them with one of the patterns of the case expression.

4 Improving Narrowing Implementations into Prolog

The refined representation of definitional trees introduced in Section 3 is very
close to the standard representation of definitional trees, but it is enough to
provide further improvements in the translation of functional logic programs
into Prolog.

It is easy to adapt the translation algorithm that appears in [13] to use our
refined representation of definitional trees as input. If we apply this slightly

8

different algorithm to the refined definitional tree of Figure 2, we obtain the
following set of clauses:

% Clause for the root node:

f(X1, X2, X3, H) :- hnf(X1, HX1), hnf(X2, HX2), f_1_2(HX1, HX2, X3, H).

% Clauses for the remainder nodes:

f_1_2(a, b, X3, H):- hnf(r1, H).

f_1_2(b, a, X3, H):- hnf(X3, HX3), f_1_2_b_a(HX3, H).

f_1_2_b_a(c, H):- hnf(r2, H).

f_1_2(c, b, X3, H):- hnf(r3, H).

where we have cut the number of clauses with regard to the standard represen-
tation into Prolog (of the rules defining function f) presented in Section 2.2.
The number of clauses is reduced in the same proportion the number of nodes
of the standard definitional tree for f were cut. As we are going to show in the
next section, this refined translation technique is able to improve the efficiency
of the implementation system.

Note that the analysis of definitional trees provide further opportunities for
improving the translation of inductively sequential programs into Prolog. For
instance, we can take notice that the definitional tree of function f in Example 1
has a “deterministic” (sub)branch, that is, a (sub)branch whose nodes have only
one child (see Figure 2). This knowledge can be used as an heuristic guide for
applying unfolding transformation steps selectively. Hence, for the example we
are considering, the clauses:

f_1_2(b, a, X3, H):- hnf(X3, HX3), f_1_2_b_a(HX3, H).

f_1_2_b_a(c, H):- hnf(r2, H).

can be transformed in:

f_1_2(b, a, X3, H):- hnf(X3, c), hnf(r2, H).

We think this selective unfolding is preferable to the more costly and gen-
eralized (post–compilation) unfolding transformation process suggested in [13]
and [8].

On the other hand, it is important to note that the kind of improvements we
are mainly studying in this work can not be obtained by an unfolding transfor-
mation process applied to the set of clauses produced by the standard algorithm
of [13]: In fact, it is not possible to obtain the above set of clauses by unfolding
transformation of the set of clauses shown in Section 2.2.

5 Experiments

We have made some experiments to verify the effectiveness of our proposal. We
have instrumented the Prolog code obtained by the compilation of simple Curry
programs by using the curry2prolog compiler of Pakcs [9] (an implementation

9

of the multi–paradigm declarative language Curry [14]). We have introduced our
translation technique in the remainder Prolog code. The results of the experi-
ments are shown in Table 1. Runtime and memory occupation were measured on
a Sun4 Sparc machine, running sicstus v3.8 under SunOS v5.7. The “Speedup”
column indicates the percentage of execution time saved by our translation tech-
nique. The values shown on that column are the percentage of the quantity
computed by the formula (t1− t2)/t1, where t1 and t2 are the average runtimes,
for several executions, of the proposed terms (goals) and Prolog programs ob-
tained when we don’t use (t1) and we use (t2) our translation technique. The
“G. stack Imp.” column reports the improvement of memory occupation for
the computation. We have measured the percentage of global stack allocation.
The amount of memory allocation measured between in each execution remains
constant. Most of the benchmark programs are extracted from [14] and the stan-

Table 1. Runtime speed up and memory usage improvements for some benchmark
programs and terms.

Benchmark Term Speedup G. stack Imp.

family grandfather(,) 19.9% 0%

geq geq(100000, 99999) 4.6% 16.2%

geq geq(99999, 100000) 4.3% 16.2%

xor xor(,) 18.5% 0%

zip zip(L1, L2) 3.6% 5.5%

zip3 zip3(L1, L2, L2) 4.5% 10%

Average 9.2% 7.9%

dard prelude for Curry programs with slight modifications. For the benchmark
programs family and xor we evaluate all outcomes. The natural numbers are
implemented in Peano notation, using zero and succ as constructors of the sort.
In the zip and zip3 programs the input terms L1 and L2 are lists of length 9.

More detailed information about the experiments and benchmark programs
can be found in http://www.inf-cr.uclm.es/www/pjulian/publications.html.

6 Discussion and Conclusions

Although the results of the preceding section reveals a good behavior of our
translation technique, it is difficult to evaluate what may be its impact over the
whole system, since the improvements appear when we can detect patterns which
have several uniformly demanded positions. For the case of inductively sequen-
tial functions without this feature, our translation scheme is conservative and
doesn’t produce runtime speedups or memory allocation improvements. On the
other hand it is noteworthy that, in some cases, the benefits of our translation
scheme are obtained in an ad hoc way in actual needed narrowing into Pro-

10

log implementation systems. For instance, the standard definition of the strict
equality used in non–strict functional logic languages is [11, 18]:

c == c→ true
c(Xn) == c(Yn)→ X1 == Y1&& . . .&&Xn == Yn

where c is a constructor of arity 0 in the first rule and arity n > 0 in the second
rule. There is one of these rules for each constructor that appears in the program
we are considering. Clearly, the strict equality has an associate definitional tree
whose pattern (X1 == X2) has two uniformly demanded positions (positions 1
and 2) and, therefore, it can be translated using our technique, that produces a
set of Prolog clauses similar to the one obtained by the curry2prolog compiler.
In fact, the curry2prolog compiler translates these rules into the following set
of Prolog clauses2:

hnf(A==B,H):-!,seq(A,B,H).

seq(A,B,H):-hnf(A,F),hnf(B,G),seq_hnf(F,G,H).

seq_hnf(true,true,H):-!,hnf(true,H).

seq_hnf(false,false,H):-!,hnf(true,H).

seq_hnf(c,c,H):-!,hnf(true,H).

seq_hnf(c(A1,...,Z1),c(A2,...,Z2),H):-!,

hnf(&&(A1==A1,&&(B1==B2,&&(...,&&(Z1==Z2,true)))),H).

Thus, the curry2prolog compiler produces an optimal representation of the
strict equality which is treated as a special system function with an ad hoc
predefined translation into Prolog, instead of using the standard translation
algorithm which is applied for the translation of user defined functions.

Although our contribution, as well as the overall theory of needed evaluation,
is interesting for computations that succeed, it is important to say that some
problems may arise when a computation does not terminate or fails. For example,
given the (partial) function

f(a, a)→ a

the standard compilation into Prolog is:

f(A,B,C) :- hnf(A,F), f_1(F,B,C).

f_1(a,A,B) :- hnf(A,E), f_1_a_2(E,B).

f_1_a_2(a,a).

while our translation technique produces:

f(A,B,C) :- hnf(A,F), hnf(B,G), f_1(F,G,C).

f_1(a,a,a).

Now, if we want to compute the term f(b, expensive term), the standard
implementation detects the failure after the computation of the first argument.
On the other hand, the new implementation computes the expensive term (to
2 Note that, we have simplified the code produced by the curry2prolog compiler in

order to increase its readability and facilitate the comparison with our proposal.

11

hnf) for nothing. Of course, the standard implementation has problems too —e.g.
if we compute the term f(expensive term, b), it also computes the expensive
term (to hnf)—, but it may have a better behavior on this problem. Thus, in
a sequential implementation, the performance of our translation technique may
be endanger when subterms, at uniformly demanded positions, are evaluated
(to hnf) jointly with an other subterm whose evaluation (to hnf) produces a
failure. An alternative to overcome this practical disadvantage is to evaluate
these subterms in parallel, introducing monitoring techniques able to detect the
failure as soon as possible and then to stop the streams of the computation.

Nevertheless, our work shows that there is a potential for the improvement of
actual (needed) narrowing implementation systems: we obtain valuable improve-
ments of execution time and memory allocation when our translation technique
is relevant, without an appreciable slowdown in the cases where it is not appli-
cable. Also, our simple translation technique is able to eliminate some ad hoc
artifices in actual implementations of (needed) narrowing into Prolog, providing
a systematic and efficient translation mechanism. Moreover, the ideas we have
just developed can be introduced with a modest programming effort in standard
implementations of needed narrowing into Prolog (such as the Pakcs [9] imple-
mentation of Curry) and in other implementations based on the use of defini-
tional trees (e.g., the implementation of the functional logic language T OY[16]),
since they don’t modify their basic structures.

7 Future Work

Failing derivations are rather a problematic case where the performance of our
translation technique may be endanger. We want to deal with these problem in
order to guarantee that slowdowns, with regard to standard implementations
of needed narrowing into Prolog, are not produced. Also we like to study how
clause indexing [19], in the context of Prolog implementation, relates with our
work.

On the other hand, we aim to investigate how definitional trees may be used
as a guide to introduce selective program transformation techniques.

Acknowledgements

I gratefully acknowledge the anonymous referees for many useful suggestions
and Sergio Antoy for clarifying me some aspects of the theoretical/practical
dimension of this problem.

References

1. M. Alpuente, M. Falaschi, P. Julián, and G. Vidal. Uniform Lazy Narrowing.
Journal of Logic and Computation 13(2), 2003. Short preliminary version in Proc.
of WFLP 2002, available at http://www.inf-cr.uclm.es/www /pjulian

12

2. S. Antoy. Definitional trees. In Proc. of ALP’92, volume 632 of LNCS, pages
143–157. Springer-Verlag, 1992.

3. S. Antoy. Needed Narrowing in Prolog. Technical Report 96-2, Portland State
University, 1996. Full version of extended abstract in [6].

4. S. Antoy. Optimal non-deterministic functional logic computations. In Proc. of
ALP’97, volume 1298 of LNCS, pages 16–30. Springer-Verlag, 1997.

5. S. Antoy. Constructor-based conditional narrowing. In Proc. of (PPDP’01).
Springer LNCS, 2001.

6. S. Antoy. Needed Narrowing in Prolog. In Proc. of PLILP’96, LNCS, pages 473–
474. 1996.

7. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of
the ACM, 47(4):776–822, July 2000.

8. S. Antoy and M. Hanus. Compiling multi-paradigm declarative programs into
Prolog. In Proc. FroCoS 2000, pages 171–185. Springer LNCS 1794, 2000.

9. S. Antoy, M. Hanus, J. Koj, P. Niederau, R. Sadre, and F. Steiner. Pacs 1.3 :
The Portland Aachen Kiel Curry System User Manual. Technical Report Ver-
sion of December, 4, University of Kiel, Germany, 2000. Available from URL:
http://www.informatik. uni-kiel.de/~pakcs/

10. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

11. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel Leaf: A Logic
plus Functional Language. Journal of Computer and System Sciences, 42:363–377,
1991.

12. M. Hanus. The Integration of Functions into Logic Programming: From Theory
to Practice. Journal of Logic Programming, 19&20:583–628, 1994.

13. M. Hanus. Efficient translation of lazy functional logic programs into Prolog. In
Proc. LOPSTR’95, pages 252–266. Springer LNCS 1048, 1995.

14. M. Hanus (ed.). Curry: An Integrated Functional Logic Language. Available at
http://www. informatik.uni-kiel.de/~curry, 1999.

15. R. Loogen, F. López-Fraguas, and M. Rodŕıguez - Artalejo. A Demand Driven
Computation Strategy for Lazy Narrowing. In Proc. of PLILP’93, pages 184–200.
Springer LNCS 714, 1993.

16. F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative
System. In Proc. of RTA’99, pages 244–247. Springer LNCS 1631, 1999.

17. J. G. Moreno, M. H. González, F. López-Fraguas, and M. R. Artalejo. An Ap-
proach to Declarative Programming Based on a Rewriting Logic. Journal of Logic
Programming, 1(40):47–87, 1999.

18. J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic Programming with Functions
and Predicates: The language Babel. Journal of Logic Programming, 12(3):191–
224, 1992.

19. R. Ramesh and I. V. Ramakrishnan and D. S. Warren. Automata–Driven Indexing
of Prolog Clauses. Journal of Logic Programming, 23(2):151–202. 1995.

13

