
Operational/Interpretive Unfolding
of Multi-adjoint Logic Programs1

Pascual Julián Ginés Moreno Jaime Penabad

Dept. de Informática Dept. de Informática Dept. de Matemáticas

Universidad de CLM Universidad de CLM Universidad de CLM

Escuela Superior de Informática Escuela Politécnica Superior Escuela Politécnica Superior

Campus Univ. 13071 Ciudad Real Campus Univ. 02071 Albacete Campus Univ. 02071 Albacete

Pascual.Julian@uclm.es Gines.Moreno@uclm.es Jaime.Penabad@uclm.es

Abstract

Multi-adjoint logic programming represents a
very recent, extremely �exible attempt for in-
troducing fuzzy logic into logic programming
(LP). In this setting, the execution of a goal
w.r.t. a given program is done in two separate
phases. During the operational one, admissi-
ble steps are systematically applied in a sim-
ilar way to classical resolution steps in pure
LP, thus returning a computed substitution
together with an expression where all atoms
have been exploited. This last expression is
then interpreted under a given lattice during
the so called interpretive phase, hence return-
ing a value which represents the fuzzy compo-
nent (truth degree) of the computed answer.
On the other hand, unfolding is a well

known transformation rule widely used in
declarative programming for optimizing and
specializing programs, among other applica-
tions. In essence, it is usually based on the
application of operational steps on the body
of program rules. The novelty of this pa-
per consists in showing that this process can
also be made in terms of interpretive steps.
We present two strongly related kinds of un-
folding (operational and interpretive), which,
apart from exhibiting strong correctness prop-
erties (i.e. they preserve the semantics of com-
puted substitutions and truth degrees) they
are able to signi�cantly simplify the two exe-
cution phases when solving goals.

1 Introduction

Multi-adjoint logic programming [12, 13] is an
extremely �exible framework combining fuzzy
logic and logic programming, which largely im-
proves older approaches previously introduced
in this �eld (see, for instance [10, 6, 3, 11,
17, 2], where di�erent fuzzy variants of Pro-
log have been proposed). An special mention
deserves the fuzzy dialect of Prolog presented
in [5], since it is very close to the language
used here. However, we �nd two slight di�er-
ences: whereas the multi-adjoint approach is
based on �weighted" clauses (with and with-
out body) whose truth degrees are elements of
any appropriate lattice, in the Fuzzy Prolog of
[5], truth degrees are based on Borel Algebras
(union intervals), and they are only applied to
facts (i.e., clauses with no body).

Informally speaking, a multi�adjoint logic
program can be seen as a set of rules each
one annotated by a truth degree and a goal
is a query to the system plus a substitution
(initially the identity substitution). In the
multi-adjoint logic programming framework,
goals are evaluated, in a given program, in
two separate computational phases. During
the operational one, admissible steps (a gen-
eralization of the classical modus ponens in-
ference rule) are systematically applied by a

1This work has been partially supported by the
EU, under FEDER, and the Spanish Science and Edu-
cation Ministry (MEC) under grant TIN 2004-07943-
C04-03.



backward reasoning procedure in a similar way
to classical resolution steps in pure LP, thus re-
turning a computed substitution together with
an expression where all atoms have been ex-
ploited. This last expression is then inter-
preted under a given lattice during what we
call the interpretive phase, hence returning
a pair 〈truth degree; substitution〉 which is the
fuzzy counterpart of the classical notion of
computed answer traditionally used in LP.

Program transformation is an optimization
technique for computer programs that start-
ing with an initial program P0 derives a se-
quence P1, . . . ,Pn of transformed programs
by applying elementary transformation rules
(fold/unfold) which improve the original pro-
gram. The fold/unfold transformation ap-
proach was �rst introduced in [4] to optimize
functional programs and then used for logic
programs [16] and (lazy) functional logic pro-
grams [1]. Program transformation also can
be seen as a methodology for software devel-
opment, hence its importance. The basic idea
is to divide the program development activity,
starting with a (possibly naive) problem spec-
i�cation written in a programming language,
into a sequence of small transformation steps.

Unfolding is a well-known, widely used,
semantics-preserving program transformation
rule. In essence, it is usually based on the
application of operational steps on the body
of program rules [14]. The unfolding transfor-
mation is able to improve programs, generat-
ing more e�cient code. Unfolding is the basis
for developing sophisticated and powerful pro-
gramming tools, such as fold/unfold transfor-
mation systems or partial evaluators, etc.

The main contribution of this paper con-
sists in showing that, in the framework of
multi-adjoint logic programming, the unfold-
ing process can be better understood, if re-
sembling the two separate phases of the under-
laying procedural semantics of multi-adjoint
logic programming languages, we distinguish
between operational and interpretive unfold-
ing steps. Therefore, we present two strongly
related kinds of unfolding: the operational
(�rstly introduced in [7]) an the interpretive.
It is important to remark that in the original

(multi-adjoint logic) language proposed in [13]
and then used in [7], the interpretive phase is
not modeled in terms of an state transition
system, which prevents the de�nition/ appli-
cation of the (interpretive) unfolding rule by
means of interpretive steps. As a consequence,
all results presented there are restricted to the
operational phase. In this paper we overcome
all these limitations, and we prove that the in-
terpretive unfolding, apart from exhibiting the
analogous strong correctness properties (i.e. it
preserves the semantics of computed substi-
tutions and truth degrees) of the operational
unfolding originally presented in [7], is able to
simplify and accelerate the interpretive phase
when solving goals w.r.t. a given program.

On the other hand, we have recently
introduced in [8] a transformation rule, the
so-called T-Norm replacement, which can be
seen as a primitive precedent of the present
interpretive unfolding. In fact, the four vari-
ants of T-Norm replacements, also perform
low-level manipulations on fuzzy expression
involving T-Norm operations on program
rules. However, our new approach improves
this poorer technique in the following points:

• It manages a much more powerful and
expressive language (the multi-adjoint
logic programming language) but with a
simpler syntax, a clearer procedural (opera-
tional/interpretive) semantics and, in general,
a better formalization.

• Now, neither interpretive steps, nor inter-
pretive unfolding, are dependent of a selection
function (computation rule), as it does occur
with any other fuzzy unfolding-based trans-
formation rule described in the literature,
since the evaluation order of expressions is
�xed by the interpretive semantics.

• As a co-lateral consequence of the previous
point and, as we will see when presenting
Theorem 5.2, it is the �rst time that our cor-
rectness results admit a clearer proof scheme
which is not linked to previous instrumental
results about the independence of any kind of
computation rule.



• Moreover, it is also the �rst time that
our fuzzy variants of unfolding rules, recover
the source-to-source language nature char-
acter in [7] and [8], where some auxiliary
object languages (with complex constructors
and intrincated arti�ces with no sense for
the �nal user) were mandatory to code
residual programs obtained after performing
operational unfolding or T-Norm replacement.

The structure of the paper is as follows. In
Section 2, we summarize the main features of
the programming language we use in this work.
Section 3 de�nes the procedural semantics of
the language, establishing a clean separation
between the operational and the interpretive
phase of a computation. In Section 4 we recall
the de�nition of operational unfolding and we
de�ne the new notion of interpretive unfold-
ing. Section 5 focuses in the properties rela-
tive to the correctness of the unfolding trans-
formations. Finally, in Section 6 we give our
conclusions and propose future work.

2 Multi-Adjoint Logic Programs

This section is a short summary of the main
features of our language. Contrary to other
previous work [7] we start from the scratch
by manipulating an extended version of the
multi�adjoint logic programing language pre-
sented in [12, 13]. We send the reader to these
works for a complete formulation.

We work with a �rst order language, L, con-
taining variables, function symbols, predicate
symbols, constants, quanti�ers, ∀ and ∃, and
several (arbitrary) connectives to increase lan-
guage expressiveness:

&1, &2, . . . , &k (conjunctions)
∨1, ∨2, . . . , ∨l (disjunctions)
←1, ←2, . . . , ←m (implications)
@1, @2, . . . , @n (aggregations)

Although the connectives &i, ∨i and @i

are binary operators, we usually general-
ize them as functions with an arbitrary
number of arguments. In the following,
we often write @i(x1, . . . , xn) instead of

@i(x1, @i(x2, . . . , @i(xn−1, xn) . . .)). More-
over, the truth function for an n-ary ag-
gregation operator [[@]] : [0, 1]n → [0, 1] is
required to be non-monotonous and ful�ll
[[@]](1, . . . , 1) = 1 and [[@]](0, . . . , 0) = 0.
Additionally, our language L contains

the values of a multi�adjoint lattice, 〈L,�
,←1, &1, . . . ,←n, &n〉, equipped with a collec-
tion of adjoint pairs 〈←i, &i〉, where each &i

is a conjunctor 1 intended to the evaluation
of modus ponens. In general, the set of truth
values L may be the carrier of any complete
bounded lattice, but, in the examples, we shall
select L as the set of real numbers in the in-
terval [0, 1].
A rule is a formula A ←i B, where A is an

atomic formula (usually called the head) and
B (which is called the body) is a formula built
from atomic formulas B1, . . . , Bn � n ≥ 0 �,
truth values of L and conjunctions, disjunc-
tions and aggregations. Rules with an empty
body are called facts. A goal is a body sub-
mitted as a query to the system. Variables
in a rule are assumed governed by universal
quanti�ers.
Roughly speaking, a multi�adjoint logic pro-

gram is a set of pairs 〈R; α〉, where R is a rule
and α is a truth degree (a value of L) express-
ing the con�dence which the user of the system
has in the truth of the rule R. Often, we will
write �R with α� instead of 〈R; α〉. Observe
that, truth degrees are axiomatically assigned
(for instance) by an expert.

3 Procedural Semantics

The procedural semantics of the multi�adjoint
logic language L can be thought as an op-
erational phase followed by an interpretive
one. Although this point of view is present in
[12, 13], in this section we establish a cleaner
separation between both phases. We also give
a novel de�nition of the interpretive phase,
with a procedural taste, useful not only for
clarify the whole computational mechanism,
but also crucial for formalizing the concept of
interpretive unfolding in Section 4.2.

1It is noteworthy that a symbol &j of L does not
always need to be part of an adjoint pair.



3.1 Operational phase

The operational mechanism uses a generaliza-
tion of modus ponens that, given a goal A and
a program rule 〈A′←iB, v〉, if there is a sub-
stitution θ = mgu({A = A′})2, we substitute
the atom A by the expression (v&iB)θ.

In the following, we de�ne the concepts
of admissible computation step, admissible
derivation and admissible computed answer,
associated to the operational phase. In the for-
malization of these concepts, we write C[A], or
more generally C[A1, .., An], to denote a for-
mula where A, or A1, .., An respectively, are
sub-expressions (usually atoms) which arbi-
trarily occur in the �possibly empty� con-
text C[]. Moreover, expression C[A/A′] (and its
obvious generalization) means the replacement
of A by A′ in context C[]. Also we use Var(s)
for referring to the set of distinct variables
occurring in the syntactic object s, whereas
θ[Var(s)] denotes the substitution obtained
from θ by restricting its domain, Dom(θ), to
Var(s).

De�nition 3.1 (Admissible Steps) Let Q
be a goal and let σ be a substitution. The pair
〈Q; σ〉 is an state and we denote by E the set
of states. Given a program P, an admissible
computation is formalized as a state transi-
tion system, whose transition relation →AS ⊆
(E × E) is the smallest relation satisfying the
following admissible rules:

Rule 1.

〈Q[A]; σ〉→AS〈(Q[A/v&iB])θ; σθ〉 if
(1) A is the selected atom in Q,
(2) θ = mgu({A′ = A}),
(3) 〈A′←iB; v〉 in P and B is not

empty.

Rule 2.

〈Q[A]; σ〉→AS〈(Q[A/v])θ; σθ〉 if
(1) A is the selected atom in Q,
(2) θ = mgu({A′ = A}), and
(3) 〈A′←i; v〉 in P.

2Let mgu(E) denote the most general uni�er of
an equation set E (see [9] for a formal de�nition of
this concept).

Rule 3.

〈Q[A]; σ〉→AS〈(Q[A/⊥]); σ〉 if
(1) A is the selected atom in Q,
(2) there is no rule in P whose

head uni�es with A.

Formulas involved in admissible computation
steps are renamed before being used. Note also
that, Rule 3 is introduced to cope with (possi-
ble) unsuccessful admissible derivations.When
needed, we shall use the symbols→AS1,→AS2

and→AS3 to distinguish between computation
steps performed by applying one of the spe-
ci�c admissible rules. Also, when required, the
exact program rule used in the corresponding
step will be annotated as a super�index of the
→AS symbol.

De�nition 3.2 Let P be a program and let
Q be a goal. An admissible derivation is a
sequence 〈Q; id〉 →∗

AS 〈Q′; θ〉. When Q′ is a
formula not containing atoms, the pair 〈Q′; σ〉,
where σ = θ[Var(Q)], is called an admissible
computed answer (a.c.a.) for that derivation.

We illustrate these concepts by means of the
following example.

Example 3.3 Let P be the following program
and let ([0, 1],≤) be the lattice where ≤ is the
usual order on real numbers.

R1 : 〈p(X)←prodq(X, Y )&G r(Y ); α = 0.8〉
R2 : 〈q(a, Y )←prods(Y ); α = 0.7〉
R3 : 〈q(Y, a)←lukar(Y ); α = 0.8〉
R4 : 〈r(Y )←luka; α = 0.7〉
R5 : 〈s(b)←luka; α = 0.9〉

The labels prod, G and luka mean for
product logic, Gödel intuitionistic logic and
�ukasiewicz logic, respectively. That is,
[[&prod]](x, y) = x · y, [[&G]](x, y) = min(x, y),
and [[&luka]](x, y) = max(0, x + y − 1).

In the following admissible derivation for
the program P and the goal ←p(X)&Gr(a),
we underline the selected expression in each
admissible step:



〈p(X)&Gr(a); id〉
→AS1

R1

〈(0.8&prod(q(X1, Y1)&Gr(Y1)))&Gr(a); σ1〉
→AS1

R2

〈(0.8&prod((0.7&prods(Y2))&Gr(Y2)))&Gr(a); σ2〉
→AS2

R5

〈(0.8&prod((0.7&prod0.9)&Gr(b)))&Gr(a); σ3〉
→AS2

R4

〈(0.8&prod((0.7&prod0.9)&G0.7))&Gr(a); σ4〉
→AS2

R4

〈(0.8&prod((0.7&prod0.9)&G0.7))&G0.7; σ5〉,

where

σ1 = {X/X1},
σ2 = {X/a, X1/a, Y1/Y2}
σ3 = {X/a, X1/a, Y1/b, Y2/b}
σ4 = {X/a, X1/a, Y1/b, Y2/b, Y3/b}
σ5 = {X/a, X1/a, Y1/b, Y2/b, Y3/b, Y4/a}

So, since σ5[Var(Q)] = {X/a}, the a.c.a.
associated to this admissible derivation is:
〈(0.8&prod((0.7&prod0.9)&G0.7))&G0.7; {X/a}〉.

3.2 Interpretive phase

If we exploit all atoms of a goal, by applying
admissible steps as much as needed during the
operational phase, then it becomes a formula
with no atoms which can be then directly in-
terpreted in the multi�adjoint lattice L. This
justi�es the following notions of interpretive
computation step, interpretive derivation and
interpretive computed answer.

De�nition 3.4 (Interpretive Step) Let P
be a program, Q a goal and σ a substitution.
We formalize the notion of interpretive com-
putation as a state transition system, whose
transition relation →IS⊆ (E ×E) is de�ned as

〈Q[@(r1, r2)]; σ〉→IS〈Q[@(r1,r2)/[[@]](r1,r2)];σ〉

where [[@]] is the truth function of connective
@ in the lattice 〈L,�〉 associated to P.

De�nition 3.5 Let P be a program and
〈Q; σ〉 an a.c.a., that is, Q is a goal not con-
taining atoms. An interpretive derivation is a
sequence 〈Q; σ〉 →∗

IS 〈Q′; σ〉. When Q′ = r ∈
L, being 〈L,�〉 the lattice associated to P, the

state 〈r; σ〉 is called an interpretive computed
answer (i.c.a.).

Usually, we refer to a complete derivation as
the sequence of admissible/interpretive steps
of the form 〈Q; id〉 →∗

AS 〈Q′; σ〉 →∗
IS 〈r; σ〉,

where 〈Q′; σ[Var(Q)]〉 and 〈r; σ[Var(Q)]〉 are,
respectively, the a.c.a. and the i.c.a. for
the derivation. Sometimes, we denote it by
〈Q; id〉 →∗

AS/IS 〈r; σ〉 and we say that 〈r; σ〉 is
the �nal computed answer of the derivation.

Example 3.6 We complete the previous
derivation of Example 3.3 by executing the
necessary interpretive steps to obtain the
interpretive computed answer (i.c.a.) with
respect to lattice ([0, 1],≤).

〈(0.8&prod((0.7&prod0.9)&G0.7))&G0.7; {X/a}〉
→IS 〈(0.8&prod(0.63&G0.7))&G0.7; {X/a}〉
→IS 〈(0.8&prod0.63)&G0.7; {X/a}〉
→IS 〈0.504&G0.7; {X/a}〉
→IS 〈0.504; {X/a}〉

Then the i.c.a for this complete derivation is
the pair 〈0.504; {X/a}〉.

4 Fuzzy Unfolding Transformations

The unfolding transformation traditionally
considered in pure LP consists in the replace-
ment of a program clause C by the set of
clauses obtained after applying a symbolic
computation step in all its possible forms on
the body of C [14].
As detailed in [7], we have adapted this

transformation to deal with multi�adjoint
logic programs by de�ning it in terms of op-
erational steps (see De�nition 3.1). Also, in
[7], we proved that the application of unfold-
ing transformation step to multi�adjoint logic
programs is able to speed up goal evaluation
by reducing the length of admissible deriva-
tions during the operational phase.
The main objective of the present section

is to recall the de�nition of operational un-
folding and to de�ne and unfolding rule for
interpretive steps. Note that our new notion
of interpretive unfolding is intended to facili-
tate the evaluation of truth degrees during the
interpretive phase.



4.1 Operational Unfolding

The following de�nition is recalled from [7],
but we have slightly simpli�ed it in the sense
that now, the operational unfolding is formu-
lated as a source-to-source language transfor-
mation instead of a (more involved) source-to-
object language transformation.

De�nition 4.1 (Operational Unfolding)
Let P be a program and let R : (A ←i

B with α = v) ∈ P be a (non unit) program
rule. Then, the operational unfolding of
rule R in program P is the new program
P ′ = (P − {R}) ∪ U where U = {Aσ ←i

B′ with α = v | 〈B; id〉→AS〈B′; σ〉}.

There are some remarks to do regarding our
de�nition. Similarly to the classical SLD�
resolution based unfolding rule presented in
[16], the substitutions computed by admissi-
ble steps during the operational unfolding, are
incorporated to the transformed rules in a nat-
ural way, i.e., by applying them to the head
of the rule. On the other hand, regarding
the propagation of truth degrees, we solve this
problem in a very easy way: the unfolded rule
directly inherits the truth degree α of the orig-
inal rule.
However, a deeper analysis of the oper-

ational unfolding transformation reveals us
that the body of transformed rules also con-
tains 'compiled�in' information on both com-
ponents of �nal computed answers (i.e., truth
degree and substitution). Regarding truth de-
grees, we observe that the body of the trans-
formed rule includes symbol ⊥ if we performed
a →AS3 admissible step, or the truth degree
together with the corresponding adjoint con-
junction of the second rule involved in the un-
folded step when the applied admissible step
was based on→AS2 or→AS1, respectively. So,
the propagation of truth degrees during un-
folding is done at two di�erent levels:

1. by directly assigning the truth degree of
the original rule as the truth degree of the
transformed one, and

2. by introducing new truth degrees (of
other rules or alternatively ⊥) in its body.

We illustrate the de�nition of operational un-
folding and its advantages by means of the fol-
lowing example.

Example 4.2 Consider again program P
shown in Example 3.3.It is easy to see that
the unfolding of rule R2 in program P (ex-
ploiting the second admissible rule of De�-
nition 3.1) generates the new program (P −
{R2}) ∪ {R6}, where R6 is the new unfolded
rule q(a, b)←prod0.9 with α = 0.7.
On the other hand, if we want to unfold now

rule R1, we must �rstly build the following
one�step admissible derivations:

〈q(X, Y )&Gr(Y ); id〉 →AS1
R6

〈(0.7&prod0.9)&Gr(b); {X/a, Y/b}〉, and

〈q(X, Y )&Gr(Y ); id〉 →AS1
R3

〈(0.8&lukar(Y1))&Gr(a); {X/Y1, Y/a}〉.

So, the resulting unfolded rules are R7:
p(a)←prod(0.7&prod0.9)&Gr(b) with α = 0.8,
and R8 : p(Y1)←prod(0.8 &luka r(Y1)) &G r(a)
with α = 0.8.
Moreover, by performing a new admissible

step with the second rule of De�nition 3.1 on
the body of rule R7, we obtain the new un-
folded rule R9 : p(a) ←prod(0.7&prod0.9)&G0.7
with α = 0.8. So, the �nal program is the
set of rules {R3,R4,R5,R6,R8,R9}. It is
important to note that the application of this
last rule to the goal proposed in Example 3.3
simulates the e�ects of the �rst four admissi-
ble steps shown in the derivation of the same
example, which evidences the improvements
achieved by operational unfolding on trans-
formed programs.

4.2 Interpretive Unfolding

The present section de�nes the notion of inter-
pretive unfolding. This kind of unfolding is de-
voted to accelerate truth degrees calculations
during the second, interpretive, phase of the
procedural semantics. Since in De�nition 3.4
we have opted for a procedural characteriza-
tion of the interpretive phase, (by formalizing
it in terms of an state transition system) thus
avoiding the use of semantic concepts (which
were necessary, for instance, in [13] and [7]),



this fact has strongly helped us to clarify the
formalization of our interpretive unfolding rule
as follows.

De�nition 4.3 (Interpretive Unfolding)
Let P be a program and let R : (A ←i

B with α = v) ∈ P be a (non unit) program
rule. Then, the interpretive unfolding of rule
R in program P with respect to the lattice
〈L,�〉 associated to P is the new program
P ′ = (P −{R})∪{A←i B′ with α = v′} such
that:

IU1 if expression r1@r2 appear in B then B′ =
B[r1@r2/[[@]](r1, r2)], where @ is a con-
nective, and v′ = v;

IU2 if B = r, where r ∈ L, then B′ is empty
and v′ = [[&i]](v, r), where (←i, &i) is an
adjoint pair in 〈L,�〉.

Observe that the �rst variant of interpretive
unfolding (IU1), simply consists in applying
an interpretive step on the body of a rule. In
this sense, an alternative formalization, more
similar to De�nition 4.1, but replacing the use
of→AS by→IS , might be: P ′ = (P−{R})∪U
where U = {A←i B′ with α = v | 〈B; id〉 →IS

〈B′; id〉}. In fact, both formulations simply
consists in replacing a program rule R whose
body contains a connective @, by an analogous
rule, with the same truth degree, but with the
calculated truth degree of @ (w.r.t. the lat-
tice associated to the program) in its body.
Anyway, it is important to contrast the IU1

transformation (in any of its alternative for-
mats), with the T-Norm replacement rule of
[8], since our new transformation compacts in
a single formulation three low-level variants of
this primitive transformation.
Focusing now in the IU2 case, we observe

that the second format proposed before for for-
malizing IU1, can not be applied now: not only
the truth degree of the transformed rule di�ers
from the original one, but also, and what is
better, the IU2 transformation is able to sim-
plify program rules by directly eliminating its
bodies, and hence, producing facts.
The following example illustrates the appli-

cation of interpretive unfolding and some of
their advantages.

Example 4.4 Let's perform now some in-
terpretive unfolding steps on the rules ob-
tained by operational unfolding in Example
4.2. By interpretive unfolding �of kind IU1�
of rule R9 (note that [[&prod]](0.9, 0.7) =
0.63) we obtain the new unfolded rule R10 :
p(a) ←prod0.63&G0.7 with α = 0.8. More-
over, by applying a new IU1 interpretive un-
folding step on this last rule, we obtain R11 :
p(a) ←prod0.63 with α = 0.8. Finally, rule
R11 becomes the fact R12 : p(a) ←prod with
α = 0.504 after a �nal IU2 interpretive un-
folding step. So, the �nal program is the set of
rules {R3,R4,R5,R6,R8,R12} and now the
derivation shown in example 3.3 can reduce its
length in six steps thanks to the use of clause
R12. More exactly, we have avoided three ad-
missible and three interpretive steps, thanks to
the fact that rule R12 comes from R1 after
having been modi�ed by three operational plus
three interpretive unfolding operations. Again,
this shows the improvements achieved by the
combined use of operational/interpretive un-
folding, on transformed programs.

5 Properties of the Transformations

In this section, we formalize and prove the best
properties one can expect of a transformation
system like the our, which is based on the two
kinds of unfolding described before. Namely,
• on the theoretical side, the total corre-
spondence between i.c.a.'s for goals executed
against original/transformed programs, and
• on the practical side, the gains in e�ciency
on unfolded programs by reducing the num-
ber of (both, admissible and interpretive) steps
needed to solve a goal.
Before presenting our combined, global re-
sult, we proceed separately with the particular
properties of each kind of unfolding. We start
by recalling from [7] the bene�ts of using op-
erational unfolding in isolation.

Theorem 5.1 (Strong Correctness of
Operational Unfolding) Let P be a
program, and let Q be a goal. If P ′ is a
program obtained by operational unfolding
of P, then, 〈Q; id〉 →n

AS 〈Q′; θ〉 in P i�
〈Q; id〉 →m

AS 〈Q′; θ′〉 in P ′, where



1. Q′ does not contain atoms,

2. θ = θ′[Var(Q)], and

3. m ≤ n.

The proof of this theorem is detailed in [7]. It
is important to note that the main advantages
of operational unfolding can be already appre-
ciated during the �rst (operational or admis-
sible) phase of goal executions. The �rst two
claims of the theorem imply the exact corre-
spondence between a.c.a.'s in both programs,
which also implies that i.c.a.'s are preserved
with independence of the lattice 〈L,�〉 used
to interpret the a.c.a.'s. Besides this, pro�t is
also achieved in e�ciency, by diminishing the
length of admissible derivations (claim 3).

Now we proceed with interpretive unfold-
ing, where we obtain the counterpart of the
previous theorem. Advantages in this case are
only appreciated during the second (interpre-
tive) phase of goal executions. In this sense,
although we can not properly speak about
a.c.a.'s preservation, we prove that it is pos-
sible to maintain the set of i.c.a's associated
to a given goal (when a.c.a.'s are interpreted
with respect to the same lattice used during
the interpretive unfolding process). Regard-
ing the reduction of the length of derivation in
transformed programs, interpretive unfolding
is able to reduce the number of interpretive
steps needed to solve a goal, similarly as oper-
ational unfolding did w.r.t. admissible steps.

Theorem 5.2 (Strong Correctness of In-
terpretive Unfolding) Let P be a program
and let Q be a goal. If P ′ is a program ob-
tained by interpretive unfolding of P, then,
〈Q; id〉 →n

AS/IS 〈r; θ〉 in P, i� 〈Q; id〉 →m
AS/IS

〈r; θ〉 in P ′, where

1. r ∈ L, being 〈L,�〉 the lattice associated
to P used during the interpretive unfold-
ing process, and

2. m ≤ n.

In order to prove this theorem, we treat sep-
arately both claims of the double implication.

Strong Completeness (⇒).
Let D : [〈Q; id〉 →k

AS 〈e; θ〉 →l
IS 〈r; θ〉], where

k+ l = n, be the (generic) complete derivation
for Q in P that we plan to simulate by con-
structing a new derivation D′ in P ′. Consider
also the rule R : (A ←i B[r1@r2] with α =
v) ∈ P such that, by interpretive unfolding
of R in program P, we obtain R′ : (A ←i

B[r1@r2/[[@]](r1, r2)] with α = v). Remem-
ber that R ∈ P and R′ ∈ P ′, but R /∈ P ′
and R′ /∈ P. Since interpretive unfolding only
a�ects expressions with connectives and ele-
ments belonging to L, the set of atoms in the
heads and bodies of both R and R′ are ex-
actly the same. Moreover, since interpretive
steps are not dependent of any kind of selec-
tion function (or computation rule), we can
assume w.l.o.g. that the �rst steps in the in-
terpretive phase in D are applied to each ex-
pression of the form r1@r2 introduced in e by
previous admissible steps done with rule R.
That is, we can safely suppose that derivation
D has the form D : [〈Q; id〉 →k

AS 〈e; θ〉 →l1
IS

〈e′; θ〉 →l2
IS 〈r; θ〉], with l1 + l2 = l. This im-

plies that we can easily construct the following
admissible derivation D′ : [〈Q; id〉 →k

AS 〈e′; θ〉]
in P ′, where:

• the length of D′ coincides with the number
of admissible steps, k, applied in D,
• the atom reduced in the i-th step of D′ co-
incides with the atom reduced in the i-th step
of D, for 1 ≤ i ≤ k, and

• the rule used in the i-th step of D′ is the
same that the one used in the i-th step of D,
for 1 ≤ i ≤ k, except when this last one is R:
in this case, we use R′ in D′.

Observe that the a.c.a.'s associated to both
derivations are not exactly the same (which
reveals that interpretive unfolding is not able
to preserve a.c.a.'s, as operational unfolding
does) but they are strongly related: both share
the same substitution θ, whereas expressions e
and e′ are very similar. In fact, any admissible
step done with ruleR′ in D′, introduces a (just
interpreted) value of the form [[@]](r1, r2) in
e′, whereas the corresponding steps done with
ruleR in D, leaves descendants of the (non yet
interpreted) expression r1@r2 in e. Formally,



if Pj is the set of positions of the j occurrences
of r1@r2 introduced in e by the application of
j admissible steps using R in D (or, equiva-
lently, Pj is the set of positions of the j occur-
rences of [[@]](r1, r2) introduced in e′ by the
application of j admissible steps using R′ in
D′), then e′ = e[r1@r2/[[@]](r1, r2)]Pj . Hence,
e′ can be seen as a partially interpreted version
of e, and then it is easy to see that, by simply
applying several interpretive steps on the cor-
responding j occurrences of r1@r2 in e, we can
replace them by [[@]](r1, r2), until reaching the
intended expression e′. From here, we can �n-
ish the complete derivations in both programs
by applying the same interpretive steps, until
obtaining the same i.c.a. 〈r, θ〉.
Regarding the reduction of the length of

the derivation on transformed programs, we
have seen that any step done with the un-
folded rule R′ in derivation D′, avoids a later
interpretive step which, on the other hand,
is unavoidable when building a derivation
using rules of the original program P. So,
the complete derivation simulating D in P ′
has the form: [〈Q; id〉 →k

AS 〈e′; θ〉 →l2
IS 〈r; θ〉],

where as we said l2 ≤ l, which implies that
m = k + l2 ≤ k + l = n what completes the
proof of the strong completeness.

Strong Soundness (⇐).
It is perfectly analogous (even easier to prove)
to the previous case.

Finally, the strong correctness of interpretive
unfolding follows from both, the strong
soundness (⇐) and the strong completeness
(⇒), as we wanted to prove.

To �nish this section, we present the fol-
lowing result which combines the use of
operational/interpretive unfolding by consid-
ering a transformation sequence of programs
(P0, . . . ,Pk), k ≥ 0. The following theorem
formalizes the best properties of the resulting
transformation system, namely, its strong
correctness and the guarantee for producing
improvements on residual programs. The
whole result directly follows as a simple
corollary from Theorems 5.1 and 5.2.

Theorem 5.3 (Strong Correctness of the
Transformation System) Let (P0, . . . ,Pk)
be a transformation sequence where each pro-
gram in the sequence, except the initial one
P0, is obtained from the immediately preceding
one by applying operational/interpretive un-
folding. Then, 〈Q; id〉 →n

AS/IS 〈r; θ〉 in P0 i�
〈Q; id〉 →m

AS/IS 〈r; θ′〉 in Pk, where

1. r ∈ L, being 〈L,�〉 the lattice associated
to P used during the interpretive unfold-
ing process,

2. θ′ = θ[Var(Q)], and

3. m ≤ n.

6 Conclusions and Future Work

The present paper must be seen as a �nal
step in the development of the research line
we started in [8] and continued in [7], where
we have tried to adapt and to study the role
played by a classical transformation rule like
unfolding, in the setting of fuzzy logic pro-
gramming whit labeled rules. In our investiga-
tions, we have dealt with di�erent fuzzy logic
programming languages sharing all them the
common feature that they are based on pro-
gram clauses/rules with "weights" expressing
the truth degree or con�dence factor one may
have in their application. The present paper
resumes and improves all our contributions in
this research line, by considering one of the
most recent and �exible languages in the �eld
[13]. We have highlighted that, our unfolding-
based transformation rules for multi-adjoint
logic programs, inherit both the simplicity and
computational power of the original language.
When formalizing extended versions of previ-
ous unfolding-based transformation rules, we
have been able now of avoiding instrumen-
tal and noisy elements like intermediate lan-
guages, computation rules, independence re-
sults, and so on. It is important to note that,
all the results presented in this paper are also
applicable to the Fuzzy Prolog of [5]3, with the

3In this approach, the interpretive phase is mod-
eled in terms of �constraint solving�, which similarly
to ours avoids the use of computation rules and other
related perturbations.



advantage that an implementation for the lan-
guage is already available in this case. (we are
planning to implement our unfolding transfor-
mations on such platform).
For the future, there exist many topics

to undertake, closely connected with this re-
search line: fuzzy unfolding semantics, fuzzy
variants of other transformation rules like fold-
ing, and partial evaluation techniques applied
to reductants calculi. We are also planning
to extend our unfolding rules to fuzzy logic
languages that, instead on weighted rules, be
based on similarity relations [2, 15]. In this
sense, we hope to take advantage of the (par-
tial) correspondences between both kind of
languages analyzed in [13].

Acknowledgements We are grateful to Su-
sana Muñoz, for providing us free access to
worthy material, and the anonymous referees
by their suggestive judgments.

References

[1] M. Alpuente, M. Falaschi, G. Moreno,
and G. Vidal. Rules + Strategies for
Transforming Lazy Functional Logic Pro-
grams. Theoretical Computer Science,
311:479�525, 2004.

[2] F. Arcelli and F. Formato. Likelog: A
logic programming language for �exible
data retrieval. In Proc. of SAC'99, pp.
260�267. ACM, Arti�cial Intelligence and
Computational Logic, 1999.

[3] J. F. Baldwin, T. P. Martin, and B. W.
Pilsworth. Fril- Fuzzy and Evidential
Reasoning in Arti�cial Intelligence. John
Wiley & Sons, Inc., 1995.

[4] R.M. Burstall and J. Darlington. A
Transformation System for Developing
Recursive Programs. Journal of the
ACM, 24(1):44�67, 1977.

[5] S. Guadarrama, S. Muñoz, and
C. Vaucheret. Fuzzy Prolog: A new
approach using soft constraints prop-
agation. Fuzzy Sets and Systems,
144(1):127�150, 2004.

[6] M. Ishizuka and N. Kanai. Prolog-ELF
Incorporating Fuzzy Logic. In Proc. of
IJCAI'85, pp. 701�703, 1985.

[7] P. Julián, G. Moreno, and J. Penabad. On
Fuzzy Unfolding. A Multi-Adjoint Ap-
proach. Fuzzy Sets and Systems, pp. 22,
2005. Accepted for publication.

[8] P. Julián, G. Moreno, and J. Penabad.
Unfolding-based Improvements on Fuzzy
Logic Programs. In ENTCS. pp. 32, 2005.
Accepted for publication.

[9] J.-L. Lassez, M. J. Maher, and K. Mar-
riott. Uni�cation Revisited. In Founda-
tions of Deductive Databases and Logic
Programming, pp. 587�625, 1988.

[10] R.C.T. Lee. Fuzzy Logic and the Res-
olution Principle. Journal of the ACM,
19(1):119�129, 1972.

[11] D. Li and D. Liu. A fuzzy Prolog database
system. John Wiley & Sons, 1990.

[12] J. Medina, M. Ojeda, and P. Vojtá².
Multi-adjoint logic programming with
continuous semantics. Proc. of LP-
NMR'01, LNAI 2173:351�364, 2001.

[13] J. Medina, M. Ojeda, and P. Vo-
jtá². Similarity-based Uni�cation:a multi-
adjoint approach. Fuzzy Sets and Sys-
tems, 146:43�62, 2004.

[14] A. Pettorossi and M. Proietti. Rules and
Strategies for Transforming Functional
and Logic Programs. ACM Computing
Surveys, 28(2):360�414, 1996.

[15] M.I. Sessa. Approximate reasoning by
similarity-based SLD resolution. Fuzzy
Sets and Systems, 275:389�426, 2002.

[16] H. Tamaki and T. Sato. Unfold/Fold
Transformations of Logic Programs. In
Proc. of ICLP'84, pp. 127�139, 1984.

[17] P. Vojtá² and L. Paulík. Soundness and
completeness of non-classical extended
SLD-resolution. In Proc. ELP'96, pp.
289�301. LNCS 1050, 1996.


