
A procedure for the construction of a similarity relation

Pascual Julián-Iranzo
Dep. of Information Technologies and Systems,

University of Castilla-La Mancha (Spain).
Pascual.Julian@uclm.es

Abstract

In this paper we present a procedure
that generates a reflexive, symmet-
ric, transitive closure of a fuzzy re-
lation. We formally prove that this
method is sound, in the sense that
it is able to produce a similarity re-
lation starting from an initial set of
similarity equations. Also we discuss
the implementation of the algorithm
and a refinement is given.

Keywords: Fuzzy Logic Program-
ming, Unification by Similarity,
Fuzzy relations, Transitive Closure.

1 Introduction and Motivation

Fuzzy Logic Programming integrates fuzzy
logic and pure logic programming in order
to provide these languages with the ability
of dealing with uncertainty and approximated
reasoning. During the last decades a great ef-
fort has been done to incorporate fuzzy con-
cepts into the logic programming framework.
However, it is noteworthy that there is no
common method for this integration (See for
instance: [7, 1, 9] and [15]; as well as [3, 4] and
[14]). A possible way to go, which is the one
adopted in this paper, is to follow the concep-
tual approach introduced in [14] where the no-
tion of “approximation” is managed at a syn-
tactic level by means of similarity relations.
The objective in this case is to make more
flexible the query answering process. A simi-
larity relation is an extension of the crisp no-

tion of equivalence relation and it can be use-
ful in any context where the concept of equal-
ity must be weakened. In [14] a new modi-
fied version of the Linear resolution strategy
with Selection function for Definite clauses
(SLD resolution) is defined, which is named
similarity-based SLD resolution (or weak SLD
resolution). This operational mechanism can
be seen as a variant of the SLD resolution
procedure where the classical unification al-
gorithm has been replaced by the weak uni-
fication algorithm formally described in [14]
(and reformulated in terms of a transition sys-
tem in [8]). Informally, Maria Sessa’s weak
unification algorithm states that two terms
f(t1, . . . , tn) and g(s1, . . . , sn) weak unify if
the root symbols f and g are considered simi-
lar and each of their arguments ti and si weak
unify. Therefore, the weak unification algo-
rithm does not produce a failure when there
is a clash of two syntactical distinct symbols
whenever they are similar.

Recently, in [8], we solved the problem of
adapting the implementation of a Warren Ab-
stract Machine (WAM) to incorporate the
Sessa’s weak unification algorithm. As a re-
sult, we obtained a Prolog implementation,
that we call S-Prolog, with an operational se-
mantics based on the weak SLD resolution
principle of [14]. Essentially, the S-Prolog
syntax is just the Prolog syntax but enriched
with a built-in symbol “∼” used for describ-
ing similarity relations by means of similarity
equations of the form:

<symbol> ~ <symbol> = <degree>

meaning that two constants, n-ary function

symbols or n-ary predicate symbols are simi-
lar with a certain degree. More precisely, we
use the built-in symbol “∼” as a compressed
notation for the symmetric closure of an arbi-
trary fuzzy binary relation (that is, a similar-
ity equation a ∼ b = α can be understood
in both directions: a is similar to b and b
is similar to a with degree α). Hence, a S-
Prolog program is a sequence of Prolog facts
and rules followed by a sequence of similarity
equations. The next is a very simple example
that serves to illustrate the S-Prolog syntax
as well as some features of its operational be-
havior. Also it informally shows how S-Prolog
is well suited for flexible query answering.

Example 1 Consider the program Autumn
that consists of the following clauses and sim-
ilarity equations:

% FACTS warm :- sunny.
autumn. rainy :- spring.
% RULES cold :- winter.
warm :- summer. happy :- warm.

% SIMILARITY EQUATIONS
spring ~ autumn = 0.7
spring ~ summer = 0.5
autumn ~ winter = 0.5

In a standard Prolog system a query as “?-
happy” fails, since we are specifying that it
is warm if it is summer time (first rule) and,
actually, it is autumn. Similarly, the query
“?- rainy” fails also.

However, the S-Prolog system is able to com-
pute the following successful derivations1:

• 〈← happy, id, 1〉
=⇒WSLD 〈← warm, id, 1〉
=⇒WSLD 〈← summer, id, 1〉
=⇒WSLD 〈2, id, 0.5〉.

Here, the last step is possible be-
cause summer weak unifies with the
fact autumn, since there is a tran-
sitive connection between summer and
autumn with approximation degree 0.5
(the minimum of 0.7 and 0.5). There-

1The symbol “id” denotes the identity substitution
and “2” the empty clause.

fore, the system answers “Yes, with
approximation degree 0.5”.

• 〈← rainy, id, 1〉
=⇒WSLD 〈← spring, id, 1〉
=⇒WSLD 〈2, id, 0.7〉.

In this case, the system answers “Yes,
with approximation degree 0.7” be-
cause spring and autumn weak unify
with approximation degree 0.7 and the
last step is possible.

In general, S-Prolog computes answers as well
as approximation degrees which are the min-
imum of the approximation degrees obtained
in each step.

We have seen that the weak SLD resolution
procedure used by the S-Prolog system works
jointly with a similarity relation defined on a
syntactic domain. However, it is not easy to
define a similarity relation on a set of elements
due to the transitivity constrains, which may
contradict the initial similarity values. There-
fore, it is convenient to let the programmer
free for introducing a partial specification of
a similarity relation, providing a set of sim-
ilarity equations, which are used by the S-
Prolog compiler to obtain a reflexive, sym-
metric, transitive closure of the set of similar-
ity equations. Hence, producing the complete
specification of the similarity relation.

In this paper we present a procedure that gen-
erates a reflexive, symmetric, transitive clo-
sure of a fuzzy relation (and therefore a simi-
larity relation) containing the initial relation.
We formally prove that this method is sound,
in the sense that it is able to produce a sim-
ilarity relation starting from an initial set of
similarity equations. We discuss the imple-
mentation of the algorithm and a refinement
is given. Also it is discussed how the algo-
rithm can be generalized to obtain a new al-
gorithm, parametric with regard the t-conorm
∇ and the t-norm 4 used for computing the
transitive closure. The new algorithm is able
to transform the initial fuzzy binary relation
into a reflexive, symmetric,4-transitive fuzzy
binary relation. That is, a similarity relation.
However, it is not the closure of the initial

relation.

2 Fuzzy Binary Relations and
Similarity Relations

Given a set U , an ordinary subset A of U can
be defined in terms of its characteristic func-
tion χA(x) (that returns 1 if x ∈ A or 0 oth-
erwise). On the other hand, a fuzzy subset
A of U is a function A : U → [0, 1]. The
function A is called the membership function,
and the value A(x) represents the degree of
membership of x in the fuzzy subset A, be-
ing a generalization of the notion of charac-
teristic function. Similarly, an ordinary bi-
nary relation on U is a subset of U × U and
it can be identified by its characteristic func-
tion U × U → {0, 1}. Therefore, the easy
extension of this concept to the fuzzy case is
to agree that, a fuzzy binary relation R is a
fuzzy subset on U × U (that is, a mapping
R : U × U → [0, 1]). So, given two elements
ui and uj in U , R(ui, uj) = αij represents the
degree to which the pair 〈ui, uj〉 is compatible
with the relation R.

Definition 2.1 A similarity relation on a set
U is a fuzzy binary relation R : U×U → [0, 1]
holding the following properties:

1. (Reflexive) R(x, x) = 1 for any x ∈ U ;

2. (Symmetric) R(x, y) = R(y, x) for any
x, y ∈ U ;

3. (Transitive) R(x, z) ≥ R(x, y)4R(y, z)
for any x, y, z ∈ U ;

where the operator ‘4’ is an arbitrary t-
norm2.

Sometimes, transitivity is qualified by an spe-
cific t-norm, 4, and it is called4-transitivity.

In [10], when the operator 4 = ∧ (that is,
it is the minimum of two elements), a simi-
larity relation is called a fuzzy equivalence re-
lation. Certainly, in this case, there exists a

2A t-norm 4 : [0, 1] × [0, 1] → [0, 1] is a binary
operator which is commutative, associative, monotone
in both arguments and 14x = x (hence, it subsumes
the classical two-valued conjunction operator) [10].

close relation between similarity relations and
equivalence relations. The so called λ-cut3 of
a fuzzy equivalence relation R is an equiva-
lence relation [10]. Since the λ-cut of R can be
considered as a generalization of the identity
relation, intuitively, a fuzzy equivalence on a
set specifies when two elements may be con-
sidered equal with regard to a property that
is not sharply defined.

Following [14], in the sequel, we restrict our-
selves to similarity relations that are fuzzy
equivalence relations. Moreover we are inter-
ested in fuzzy equivalence relations at a syn-
tactic level. In other words, we deal with the
minimum t-norm (and its dual t-conorm4: the
maximum operator “∨”).

In general, a (fuzzy binary) relation R on a
set U may or may not have some property P,
such as reflexivity, symmetry, or transitivity.
If there is a relation R′ which is the least re-
lation holding property P and containing R,
then R′ is called the closure of R with respect
to P. In the fuzzy setting, a reasonable defi-
nition of the concept of a relation containing
an other is the following.

Definition 2.2 Let R and R′ fuzzy binary re-
lations on a set U . R is contained in R′, de-
noted R v R′, if and only if for each a, b
in U R(a, b) ≤ R′(a, b). R′ is the least rela-
tion containing R if and only if R v R′ and
for each fuzzy binary relation R′′, such that
R v R′′, R′ v R′′.

Let D = {〈u, u〉 | u ∈ U} be the diagonal
relation and R be a fuzzy binary relation on
a set U . The reflexive closure of R can be
formed by setting to one the compatibility
degree of all pairs in D. That is, if we de-
note the reflexive closure of R by R=, we are
forcing that the new relation R= fulfills that
R=(u, u) = 1 for all u ∈ U . The symmet-
ric closure of R is a relation R↔ obtained by
assigning the compatibility degree R(b, a) of

3If R is a fuzzy binary relation on U , the binary
relation Rλ = {(x, y) | R(x, y) ≥ λ} is called the λ-
cut of R.

4A t-conorm ∇ : [0, 1] × [0, 1] → [0, 1] is a binary
operator which is commutative, associative, monotone
in both arguments and 0∇x = x (hence, it subsumes
the classical two-valued disjunction operator) [10].

each pair 〈b, a〉 in the domain of R to R(a, b).
So, we are making R↔(a, b) = R↔(b, a) for
all a, b in U . The transitive closure of R
is a relation R+ such that, R+(a, b) = α if
there exists a sequence a ≡ u1, . . . , un ≡ b,
with n ≥ 1 and R(ui, ui+1) = αi(i+1) for all
i = 1, . . . , n− 1. The compatibility degree
α = α124· · ·4α(n−1)n. In the sequel, we de-
note the reflexive, symmetric, transitive clo-
sure of R by the symbol R≡. It is worth to
mention that these definitions are assuming
that compatibility degrees R(b, a) (not neces-
sary equal to zero) can be modified in order
to fulfill the desired property. These are the
least restricted notions of reflexive, symmet-
ric and/or transitive closure of a fuzzy binary
relation that can be conceived in a fuzzy con-
text.

Before ending this section it is necessary to
introduce several notations and concepts on
representation of fuzzy relations that we shall
use throughout the rest of the paper.

Let A be a finite set of cardinality n and as-
sume we list the elements of A on an arbitrary
sequence {a1, a2, . . . , an}. Then a fuzzy bi-
nary relation R on A can be represented by a
matrix M = [mij] such that mij = R(ai, aj).
Sometimes we say that mij is the entry 〈i, j〉
of M . By reasons that soon will be evident,
M is called the adjacency matrix of R.

Corresponding to any fuzzy binary relation R
on A and its adjacency matrix representation
M , there is a labeled directed graph (or di-
graph) G whose nodes (or vertices) are the
members of the domain of R and whose la-
beled arcs are the triples ai

αij−→ aj for which
R(ai, aj) = αij . A path (of length k) from
node b to node c is a finite sequence of arcs
b ≡ b0

α1−→ b1
α2−→ · · · αk−→ bk ≡ c such that

the right node of each arc (other than the last)
equals the left node of the succeeding arc. If
a −→ x1 −→ x2 −→ · · · −→ xl −→ b is a
path from a to b, then x1, x2, . . . , xl are its
interior vertices. A simple path is a path in
which no interior vertex is repeated. A cyclic
path is a path whose first and end nodes are
the same. The successors of a node a are all
the nodes b for which there exists a path from
a to b. Similarly, the predecessors of a node

b are all the nodes a for which there exists a
path from a to b. Node b is an immediate suc-
cessor of node a if the arc a

α−→ b exists, and
immediate predecessor is dually defined.

In the adjacency matrix M = [mij], represen-
tation of a relation R and its corresponding
digraph G, the elements mik 6= 0 in row i
identify the immediate successors ak of node
ai. Similarly, the elements mkj 6= 0 in col-
umn j identify the immediate predecessors ak

of node aj . Hence, the name of “adjacency
matrix”.

3 A Direct Algorithm to Construct
a Similarity Relation

In this section we present an algorithm able
to transform a fuzzy binary relation R on a
set A into a similarity relation R≡ on the set
A, which is the reflexive, symmetric, transi-
tive closure of R (that is, the least fuzzy bi-
nary relation on the set A containing R and
holding the reflexive, symmetric and transi-
tive properties).

Before describing our algorithm we need to
introduce the following definition.

Definition 3.1 Let M = [mij] be the n ×
n adjacency matrix representing a fuzzy bi-
nary relation R on a set A. An element
mij 6= 0 preserves transitivity if for each
k ∈ {1, . . . , n}, mik ∧mkj ≤ mij

As we shall see in the next section, this con-
cept plays an important role in the soundness
proof of the proposed algorithm.

Intuitively, if the elements of a matrix pre-
serve transitivity, the relation represented by
this matrix does not break one of the nec-
essary conditions to be a similarity relation.
Hence, we provide as input of the algorithm
a matrix whose elements preserve transitivity
and partially specify the similarity relation we
can construct. To give this partially specified
similarity relation it is enough to set some el-
ements of the inferior triangular matrix5 let-
ting all the elements of the superior triangular

5The one formed by the elements below the diago-
nal.

matrix6 set to zero. Then, the algorithm ma-
nipulates the initial matrix (trying to keep up
the initial compatibility degrees as much as
possible7) until a new one, holding the prop-
erties of a similarity relation, is constructed.

Algorithm 1

Input: An adjacency matrix M = [mij],
representing a fuzzy binary relation R on
a set A, whose elements preserve tran-
sitivity and with all the elements of the
superior triangular matrix set to zero.

Output: The adjacency matrix M≡ cor-
responding to the reflexive, symmetric,
transitive closure of R.

begin

Step 1. Build the reflexive closure
of R: for each entry 〈i, i〉 in M do
mii := 1;
Step 2. Build the symmetric closure
of R: for each entry 〈i, j〉 in M , such
that mij 6= 0, do mji := mij;
Step 3. Build the transitive closure of
R: for each column k and entry 〈i, j〉
in M do mij := mij ∨ (mik ∧mkj);
where “∨” and “∧” are, respectively,
the maximum and the minimum op-
erators;
Return M≡ := M .

end

Step 3 is an extension of the wellknown War-
shall’s algorithm [16] for computing the tran-
sitive closure of a relation, where the classi-
cal meet and joint operators on the set {0, 1}
have been changed by the maximum and the
minimum operators on the real interval [0, 1]
respectively. A fact that makes Warshall’s
algorithm attractive is that it computes the
transitive closure in only one pass over M (in
the sense that each element is tested once), a
fact that is not obvious [16]. To get the intu-
ition behind this third step some more com-
ments are needed:

6The one formed by the elements above the diago-
nal.

7Observe that this objective is not always pursued
by other authors. See for instance [5].

• The computation of the transitive closure
of a digraph G amounts to adding a min-
imal set of arcs to G that makes all suc-
cessor and predecessor relationships in G
immediate successor and predecessor re-
lationships (hence, the ”immediate” re-
lationships vary with time as the closure
calculation progresses).

• In graph terms, one can understand the
third step of the algorithm as follows:

For every node ak

For every immediate predecessor ai of ak

For every immediate successor aj of ak,

Make aj an immediate successor of ai

So, when the algorithm processes a col-
umn k, it is adding arcs from all the cur-
rent immediate predecessors of ak to all
its current immediate successors. From
this observation it is obvious that the al-
gorithm adds only arcs that should be
added; i.e. if it sets mij to a value dif-
ferent from zero, then there is a path
from the node ai to the node aj . War-
shall proved that, when all the columns
have been processed, the algorithm have
added all the arcs a −→ b for which there
is a path from a to b.

The following example illustrates the behavior
of the algorithm.

Example 2 Let A = {a1 ≡ spring, a2 ≡
summer, a3 ≡ autumn, a4 ≡ winter} be
the syntactic domain of Example 1.
Given the fuzzy relation R on A, such
that R(a2, a1) = 0.5, R(a3, a1) = 0.7,
R(a4, a3) = 0.7, Algorithm 1 constructs the
following sequence of matrices:

• Input Matrix M. • M after steps 1 and 2.264 0 0 0 0
0.5 0 0 0
0.7 0 0 0
0 0 0.5 0

375
264 1 0.5 0.7 0

0.5 1 0 0
0.7 0 1 0.5
0 0 0.5 1

375
• M after iter. 1 of step 3. • M after iter. 2 of step 3.264 1 0.5 0.7 0

0.5 1 0.5 0
0.7 0.5 1 0.5
0 0 0.5 1

375
264 1 0.5 0.7 0

0.5 1 0.5 0
0.7 0.5 1 0.5
0 0 0.5 1

375
• M after iter. 3 of step 3. • M after iter. 4 of step 3.264 1 0.5 0.7 0.5

0.5 1 0.5 0.5
0.7 0.5 1 0.5
0.5 0.5 0.5 1

375
264 1 0.5 0.7 0.5

0.5 1 0.5 0.5
0.7 0.5 1 0.5
0.5 0.5 0.5 1

375

Modifications between each iteration are bold-
faced. Last matrix represents the reflexive,
symmetric, transitive closure of R and, as we
shall prove, a similarity relation.

This last example gives us an alternative way
to understand the computation performed at
Step 3 as the construction of a sequence of
matrices. We shall take advantage of it in the
next section.

4 Soundness of the Algorithm

Analysing Step 3 of Algorithm 1 in a more
detailed way, we can observe that it is based
on the construction of a sequence of matri-
ces W0,W1, . . . ,Wk, . . . ,Wn, where W0 is the
matrix representing the reflexive, symmetric
closure of a fuzzy binary relation R (obtained
after steps 1 and 2 of the algorithm) and
Wk = [wk

ij] is the one obtained in the iter-
ation k of Step 3. By construction, if wk

ij 6= 0
then there is a path from ai to aj with all
the interior vertices of this path belonging to
the set of nodes {a1, a2, . . . , ak}. In other
words, Wk contains information of all paths
that can be built from the digraph G with zero
or more interior vertices in {a1, a2, . . . , ak}.
It is important to note that, there is a path
from ai to aj with all interior vertices in
{a1, a2, . . . , ak} if one of the following cases
holds: i) there is a path from ai to aj with
all interior vertices in {a1, a2, . . . , ak−1}; or ii)
there is a path from ai to ak with all inte-
rior vertices in {a1, a2, . . . , ak−1} and there is
a path from ak to aj with all interior vertices
in {a1, a2, . . . , ak−1}. The first type of path
occurs if and only if wk−1

ij 6= 0, and the sec-
ond type of paths occurs both wk−1

ik 6= 0 and
wk−1

kj 6= 0. Hence, wk
ij 6= 0 if and only if either

wk−1
ij 6= 0 or both wk−1

ik 6= 0 and wk−1
kj 6= 0.

Formally: wk
ij = wk−1

ij ∨(wk−1
ik ∧wk−1

kj). There-
fore, we can compute Wk directly from Wk−1.

Also note that when the computation of Wn

has finished, one of its elements wn
ij differs

from zero if and only if there is a path
from ai to aj with all interior vertices in
{a1, a2, . . . , an}. But these are the only ver-
tices in the digraph G. This last observation

proves that when Step 3 of Algorithm 1 has
been concluded all the arcs a −→ b for which
there is a path from a to b have been added to
the original digraph G, completing the com-
putation of the transitive closure of the re-
lation. Therefore, in the rest of this section
we concentrate in those specific aspects that
guarantee that Algorithm 1 is able to produce
a similarity relation starting from an initial
fuzzy binary relation.

Lemma 4.1 Let A be a finite set and
{a1, a2, . . . , an} an arbitrary sequence of its el-
ements. Let W0 be the reflexive, symmetric
closure of a fuzzy binary relation R on A ob-
tained after Step 1 and Step 2 of Algorithm 1.
Each matrix Wk, in the sequence of matrices
W1, . . . ,Wn obtained by Step 3 of Algorithm 1,
fulfils the following properties for all i, j in
{1, 2, . . . , n}:

1. (reflexivity) wk
ii = 1;

2. (symmetry) wk
ij = wk

ji

3. (transitivity) if wk
ij 6= 0, wk

il ∧ wk
lj ≤ wk

ij

for each l ≤ k.

Before establishing the main result of this
paper, it is necessary to prove the following
proposition which states two interesting prop-
erties of Algorithm 1: i) once an element wk

ij

in a matrix Wk is set to a value different from
zero it remains an invariant of the sequence of
matrices Wk+1, . . . ,Wn; ii) if wk−1

ij = 0 then
the entry 〈i, j〉 of Wk is set to minimum of
wk−1

ik and wk−1
ik in the iteration k.

Proposition 4.2 Let A be a finite set and
{a1, a2, . . . , an} an arbitrary sequence of its el-
ements. Let W0 be the reflexive, symmetric
closure of a fuzzy binary relation R on A ob-
tained after Step 1 and Step 2 of Algorithm 1.
Let W1, . . . ,Wn be the sequence of matrices
obtained by Step 3 of Algorithm 1. For each
k, i and j in {1, 2, . . . , n}:

1. If wk−1
ij 6= 0, wk

ij = wk−1
ij ;

2. If wk−1
ij = 0, wk

ij = wk−1
ik ∧ wk−1

ik ≥ 0.

Theorem 4.3 Given an adjacency matrix,
representing a fuzzy binary relation R on a set
A, whose elements preserve transitivity and
with all the elements of the superior triangu-

lar matrix set to zero, Algorithm 1 produces
the adjacency matrix corresponding to the re-
flexive, symmetric, transitive closure of R

We end this section with the following obser-
vation: It is possible to generalize Lemma 4.1
to an arbitrary distributive idempotent t-
conorm ∇ and to an arbitrary distributive t-
norm4 (because we do not use any other spe-
cific requirement that the idempotence prop-
erty of the t-conorm ∨; the rest of properties
used in the proof are shared by all distribu-
tive t-conorms and t-norms). Therefore we
can generalize Algorithm 1 to obtain a new
parametric algorithm which is able to trans-
form the initial fuzzy binary relation R on U
into a reflexive, symmetric,4-transitive fuzzy
binary relation R≡4 . That is, a similarity re-
lation. However, R≡4 is not the closure of
R because may happen that R≡4(ai, aj) ≤
R(ai, aj) for some ai and aj in U .

5 Refinement and Implementation
Issues

Proposition 4.2 gives us some clues for the re-
finement of the algorithm. Certainly, it is pos-
sible to disregard entries different from zero,
since they remains invariant. On the other
hand, it is not necessary to inspect all the ma-
trix entries, but only the entries of the inferior
triangular matrix, because, once an element
of the inferior triangular matrix is computed,
the symmetric element (in the superior trian-
gular matrix) can be set to the same value.
Bearing in mind these comments, we give the
following refinement of Algorithm 1.

Algorithm 2 (Step 3)
Input: Matrix W0 = [wij].
Output: Matrix Wn.
begin

for k := 1 to n do
for i := 2 to n do
for j := 1 to i− 1 do
if wij 6= 0
{wij := wik ∧ wkj;
wji := wij}

end

Our algorithm has been implemented in the
core of a Similarity WAM machine [8] which
is the basis for the implementation of the S-
Prolog compiler. The Similarity WAM ma-
chine has been designed to incorporate weak
unification without altering the main struc-
ture of the classical WAM. It consist of a
Similarity Matrix memory area, containing a
representation of the adjacency matrix Wn

computed by our algorithm (as well as other
structures —See [8] for technical details.—).
The Similarity Matrix memory area and its
information is used at compilation time, by
the Adapter (a part of the S-Prolog compiler)
in order to encode the information about
the similarity of some predicates into an in-
termediate code which is then used by the
Code Generator to produce machine instruc-
tion able to manage the weak unification of
predicates as a crisp process; and at execu-
tion time, when it is necessary during the ar-
gument’s weak unification process.

6 Conclusions

In this paper we defined a procedure (Algo-
rithm 1) that generates a reflexive, symmet-
ric, closure of a fuzzy relation (and therefore
a similarity relation containing the initial re-
lation). The algorithm, has three steps. The
first step computes the reflexive closure of the
initial relation; the second the symmetric clo-
sure. The third step is an extension of the
wellknown Warshall’s algorithm for comput-
ing the transitive closure of a binary rela-
tion. We formally proved that the algorithm
is sound (Theorem 4.3), in the sense that it
is able to produce a similarity relation start-
ing from an initial set of similarity equations.
An interesting property of this algorithm is
that once an element in a matrix is set to a
value different from zero it remains an invari-
ant of the sequence of matrices computed by
the algorithm. In other words, it preserves the
approximation degrees provided by the pro-
grammer in the similarity equations.

This algorithm has been implemented in the
core of a Similarity WAM machine [8] where
the computed similarity relation is stored into

the similarity matrix memory area.

Also it was discussed how the algorithm could
be generalized to obtain a new algorithm,
parametric with regard to an arbitrary dis-
tributive t-conorm, ∇, and an arbitrary dis-
tributive t-norm, 4. The new algorithm is
able to transform the initial fuzzy binary rela-
tion into a reflexive, symmetric, 4-transitive
fuzzy binary relation. That is, a similarity
relation. However, in general, it is not the
closure of the initial relation.

Acknowledgements

This work has been partially supported by
the European Union FEDER project and the
Spanish Science and Education Ministry un-
der grants TIN 2004-07943-C04-03 and TIN
2007-65749.

References

[1] J. F. Baldwin, T. P. Martin, and B. W.
Pilsworth. Fril- Fuzzy and Evidential
Reasoning in Artificial Intelligence. John
Wiley & Sons, Inc., 1995.

[2] Shaul Dar and Raghu Ramakrishnan. A
performance study of transitive closure
algorithms. In Proc of ACM-SIGMOD,
pages 454–465, 1994.

[3] Francesca Arcelli Fontana and Ferrante
Formato. Likelog: A logic programming
language for flexible data retrieval. In
Proc of ACM-SAC, pages 260–267, 1999.

[4] Francesca Arcelli Fontana and Ferrante
Formato. A similarity-based resolution
rule. Int. Journal of Intelligent Systems,
17(9):853–872, 2002.

[5] L. Garmendia, C. Campo, S. Cubillo, and
A. Salvador. A method to make some
fuzzy relations t-transitive. Int. Jour-
nal of Intelligent Systems, 14(9):873–882,
1999.

[6] L. Garmendia and A. Salvador. On a new
method to t-transitivize fuzzy relations.
In Proc. of IPMU, pages 864–869, 2000.

[7] S. Guadarrama, S. Muñoz, and
C. Vaucheret. Fuzzy Prolog: A
new approach using soft constraints
propagation. Fuzzy Sets and Systems,
144(1):127–150, 2004.

[8] P. Julián-Iranzo and C. Rubio-Manzano.
A WAM implementation for flexible
query answering. In Proc. of IASTED-
ASC, pages 262–267. ACTA Press, 2006.
An extended version can be found at:
http://www.inf-cr.uclm.es/www/pjulian/

swam.html.

[9] J. Medina, M. Ojeda-Aciego, and
P. Vojtáš. Similarity-based unification:
a multi-adjoint approach. Fuzzy Sets and
Systems, 146(1):43–62, 2004.

[10] H.T. Nguyen and E.A. Walker. A First
Course in Fuzzy Logic. Chapman &
Hall/CRC, Boca Ratón, Florida, 2000.

[11] Esko Nuutila. Efficient Transitive Clo-
sure Computation in Large Digraphs.
PhD thesis, Helsinki University of Tech-
nology, June 1995.

[12] S. Dar R. Agrawal and H. V. Ja-
gadish. Direct transitive closure algo-
rithms: Design and performance evalu-
ation. ACM Transactions on Database
Systems, 15(3):427–458, 1990.

[13] Maria I. Sessa. Flexible querying in
deductive database. In School on Soft
Computing at Salerno University: Se-
lected Lectures 1996-1999, pages 257–
276. Springer Verlag, 2000.

[14] Maria I. Sessa. Approximate reasoning
by similarity-based SLD resolution. The-
oretical Computer Science, 275(1-2):389–
426, 2002.

[15] P. Vojtas. Fuzzy Logic Programming.
Fuzzy Sets and Systems, 124(1):361–370,
2001.

[16] S. Warshall. A theorem on boolean ma-
trices. Journal of ACM, 1(9):11–12, Jan.
1962.

