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Abstract

Partial evaluation (PE) is an automatic program transformation technique aiming
to obtain, among other advantages, the optimization of a program with respect
to parts of its input: hence, it is also known as program specialization. This paper
introduces the subject of PE into the field of fuzzy logic programming. We define the
concept of PE for multi-adjoint logic programs and goals, and apart from discussing
the benefits achieved by this technique, we also introduce in the fuzzy setting a
completely novel application of PE which allows us the computation of reductants
guaranteeing completeness properties without harming the computational efficiency.
Reductants are a special kind of fuzzy rules which constitute an essential theoretical
tool for proving correctness properties. As observed in the specialized literature,
a multi-adjoint logic program, when interpreted on a partially ordered lattice, has
to include all its reductants in order to preserve the (approximate) completeness
property. This introduces severe penalties in the implementation of efficient multi-
adjoint logic programming systems: not only the size of programs increases but
also their execution time. In this paper we define a refinement to the notion of
reductant based on PE techniques, that we call PE-reductant . We establish the
main properties of PE-reductants (i.e., the classical concept of reductant and the
new notion of PE-reductant are both, semantically and operationally, equivalent)
and, what is the best, we demonstrate that our refined notion of PE-reductant is
even able to increase the efficiency of multi-adjoint logic programs.
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1 Introduction

Many transformation techniques have been proposed in the literature, in or-
der to improve program code. One of the best known is Partial evaluation
(PE) [1], which also offers a unified framework for the study of compilers and
interpreters. PE is an automatic program transformation technique aiming at
the optimization of a program with respect to parts of its input: hence, it is
also known as program specialization. It is expected that the specialized pro-
gram (also called residual program or partially evaluated program) could be
executed more efficiently than the original program. This is because the resid-
ual program is able to save some computations, at execution time, that were
done only once at PE time. To fulfill this goal, PE uses symbolic computation
as well as some techniques provided by the field of program transformation
[2], specially the so called unfolding transformation. Unfolding is essentially
the replacement of a call by its definition, with appropriate substitutions. In
general, PE techniques include stop criteria to guarantee the termination of
the PE process 1 . Therefore, PE is an automatic transformation technique
(that is, the PE process can be completed without human intervention). This
feature distinguishes PE from other program transformation techniques [2–4].

PE has been widely applied in the field of declarative languages: functional
programming [5,1,6]; logic programming [7–9,3], where it is usually called par-
tial deduction; and functional logic programming [10–12]. Also it has been ap-
plied to the area of imperative languages (e.g., the language C [13]). Although
the objectives are similar, the general methods are often different due to the
distinct underlying computational models. Techniques in conventional partial
deduction of logic programs usually rely on the unification-based parameter
propagation [14], which is part of the resolution principle. In this context, the
input data are provided as partial data arguments in a goal (mainly an atomic
formula).

Also, PE has been applied extensively to a variety of concrete problems, such
as [1]: specialization of database queries; mechanical theorem proving; opti-
mization of ray tracing procedures in the area of computer graphics; soft-
ware maintenance and program understanding; specialization of simulators
for training neuronal networks; and circuit simulators specialization.

On the other hand, Multi-adjoint logic programming [15–17] is an extremely
flexible framework combining fuzzy logic and logic programming. Informally
speaking, a multi-adjoint logic program can be seen as a set of rules each of
which is annotated by a truth degree (a value of a complete lattice, for instance
the real interval [0, 1]) and a query to the system is a goal plus a substitu-

1 Controlling the PE process is an important task. However, it is out of the scope
of this work.
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tion (initially the identity substitution, denoted by id). Given a multi-adjoint
logic program, goals are evaluated in two separate computational phases. Dur-
ing the operational phase, admissible steps (a generalization of the classical
modus ponens inference rule) are systematically applied by a backward rea-
soning procedure in a similar way to classical resolution steps in pure logic
programming. More precisely, in an admissible step, for a selected atom A in
a goal and a rule 〈H←B; v〉 of the program, if there is a most general unifier θ
of A and H , the atom A is substituted by the expression (v&B)θ, where “&”
is an adjoint conjunction evaluating modus ponens . Finally, the operational
phase returns a computed substitution together with an expression where all
atoms have been exploited. This last expression is then interpreted under a
given lattice during what we call the interpretive phase [18], hence returning a
pair 〈truth degree; substitution〉 which is the fuzzy counterpart of the classical
notion of computed answer traditionally used in pure logic programming.

A multi-adjoint logic program, when interpreted on a partially ordered lat-
tice, needs to incorporate a special kind of rules, called reductants, in order to
preserve the (approximate) completeness property [17]. This introduces severe
penalties in the implementation of efficient multi-adjoint logic programming
systems. Because a multi-adjoint logic program has to include all its reduc-
tants, not only the size of programs increases but also their execution time.
Therefore, if we want to develop complete, efficient implementation systems
for the multi-adjoint logic framework, it is essential to define methods for op-
timizing the computation of reductants. In this work we apply PE techniques
to achieve this goal. The idea is to diminish the negative impact of incorpo-
rating reductants to a multi-adjoint logic program, by means of a preprocess
where reductants are partially evaluated before they are included in the tar-
get program: the PE phase produces a set of refined reductants; hence, the
computational effort done (only once) during the generation time is avoided
(many times) at execution time.

In this work, after recalling in Section 2 the main concepts of the multi-adjoint
logic programming paradigm [15–17], being inspired by our own experience
in the development of PE techniques for declarative programs [19,11] and
program transformation rules for multi-adjoint logic programs [20,18], we deal
with the following objectives:

• We define the concept of PE for the new fuzzy setting in Section 3. The
idea is to adapt, for this richer framework, the techniques arisen around the
field of partial deduction of pure logic programs [7,21,9], but incorporating
the unfolding rule developed in [20,18] for this class of fuzzy logic programs.
Following this path, we try to unfold admissible goals, as much as possible,
in order to obtain an optimized (specialized) version of the original program.

• Using the partial evaluation techniques just developed, in Section 4 we give
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a more refined version of the concept of reductant considered in [17], which
we call PE-reductant. We present its formal definition and then, we relate
it with the classical concept of reductant and also with the notion of partial
evaluation. We also informally discuss the benefits of the resulting technique
by means of some representative examples.
• In Section 5 we establish the formal correctness properties of PE-reduc-

tants focusing in both, semantic and procedural aspects. These properties
enjoyed by our PE technique, are formally proved and its benefits are easily
evidenced with some elucidating examples. Moreover, we also confirm the
reduction of the length of admissible derivations when using the improved
notion of PE-reductant instead of the older one of reductant, which allows
us to obtain more efficient residual programs in practice.
• Finally, before concluding in Section 7, we discuss in Section 6 some other

different approaches appeared in the specialized literature. Our contrast is
made at several levels, including language extensions, transformation tech-
niques and implementation issues.

2 Preliminaries

This section summarizes the main features of multi-adjoint logic programming.
We refer the interested reader to [15–17] for a complete formulation.

2.1 The multi-adjoint logic language

We work with a first order language, L, containing variables, function sym-
bols, predicate symbols, constants, quantifiers, ∀ and ∃, and several (arbi-
trary) connectives to increase language expressiveness. In our fuzzy setting,
we use implication connectives (←1,←2, . . . ,←m) and also other connectives
which are grouped under the name of “aggregators” or “aggregation opera-
tors”. They are used to combine/propagate truth values through the rules.
The general definition of aggregation operators subsumes conjunctive opera-
tors (denoted by &1, &2, . . . , &k), disjunctive operators (∨1,∨2, . . . ,∨l), and
average and hybrid operators (usually denoted by @1, @2, . . . , @n). Although
the connectives &i and ∨i are binary operators, @i operators are usually func-
tions with an arbitrary number of arguments. Also note that, we often abstract
a complex expression, E , containing &i, ∨i and @i operators, as simply writing
@(x1, x2, . . . , xn), where {x1, x2, . . . , xn} is the set of distinct variables occur-
ring in E .

Aggregation operators are useful to describe/specify user preferences. An ag-
gregation operator, when interpreted as a truth function, may be an arith-
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metic mean, a weighted sum or in general any monotone application whose
arguments are values of a complete bounded lattice L. For example, if an
aggregator @ is interpreted as @̇(x, y, z) = (3x + 2y + z)/6, we are giving
the highest preference to the first argument, then to the second, being the
third argument the least significant. By definition, the truth function for an
n-ary aggregation operator @̇ : Ln → L is required to be monotone and fulfill
@̇(⊤, . . . ,⊤) = ⊤, @̇(⊥, . . . ,⊥) = ⊥.

Additionally, our language L contains the values of a multi-adjoint lattice,
〈L,�,←1, &1, . . . ,←n, &n〉, equipped with a collection of adjoint pairs of the
form 〈←i, &i〉 where each &i is a conjunctor 7 intended to produce the evalu-
ation of modus ponens. In general, the set of truth values L may be the carrier
of any complete bounded lattice, as occurs for instance with the simpler case
of the set of real numbers in the interval [0, 1] (which is a totally ordered
lattice or chain).

A rule is a formula H ←i B, where H is an atomic formula (usually called the
head) and B (which is called the body) is a formula built from atomic formulas
B1, . . . , Bn, n ≥ 0, truth values of L and aggregation operators. Rules whose
body is ⊤ are called facts (usually, we will represent a fact as a rule with an
empty body). A goal is a body submitted as a query to the system. Variables
in a rule are assumed to be universally quantified. Roughly speaking, a multi-
adjoint logic program is a set of pairs 〈R; α〉, where R is a rule and α is a
truth degree (a value of L) expressing the confidence that the user of the system
has in the truth of the rule R. Observe that, truth degrees are axiomatically
assigned (for instance) by an expert. By abuse of language, we sometimes refer
a tuple 〈R; α〉 as a “rule”.

Formulas are interpreted on a multi–adjoint lattice. In this framework, it is
sufficient to consider Herbrand interpretations, in order to define a declarative
semantics [17]. Therefore, a fuzzy interpretation, I, is a mapping from the
Herbrand base, BL, into the multi–adjoint lattice of truth values L. The truth
value of a ground atom A ∈ BL is I(A). Given an assignment ϑ from terms
into elements of the Herbrand universe UL, the valuation of a formula in an
interpretation is obtained by structural induction:

I(p(t1, . . . , tn))[ϑ] = I(p(t1ϑ, . . . , tnϑ)),

I(@(A1, . . . , An))[ϑ] = @̇(I(A1)[ϑ], . . . , I(An)[ϑ]),

I(A←B)[ϑ] = I(A)[ϑ]←̇I(B)[ϑ],

I((∀x)A)[ϑ] = inf{I(A)[ϑ′] | ϑ′ x–equivalent to ϑ},

7 For a formal definition of a multi-adjoint lattice and the semantic properties of
the connectives in L, see [17]. It is noteworthy that a symbol &j of L does not
always need to be part of an adjoint pair.
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where p is a predicate symbol, @ an arbitrary aggregator, A and Ai atomic
formulas, B any body,A any formula and we denote the truth value function of
a connective @ by @̇. An assignment ϑ′ is x–equivalent to ϑ when z[ϑ′] = z[ϑ]
for all variable z 6= x of L. When the assignment would not be relevant, we
shall omit it during the valuation of a formula. Moreover, an interpretation I
satisfies a rule 〈A←iB; v〉 if, and only if, v ≤ I(A←iB), and an interpretation
I is a model of P if, and only if, all rules in P are satisfied by I.

2.2 Procedural Semantics

The procedural semantics of the multi-adjoint logic language L can be thought
of as an operational phase followed by an interpretive one. Similarly to [18],
in this section we establish a clear separation between both phases. The
operational mechanism uses a generalization of modus ponens that, given
an atomic goal A and a program rule 〈H←iB; v〉, if there is a substitution
θ = mgu({A = H}) 1 , we substitute the atom A by the expression (v&iB)θ.
In the following, we write C[A] to denote a formula where A is a sub-expression
(usually an atom) which arbitrarily occurs in the —possibly empty— context
C[]. Moreover, an expression C[A/H ] means the replacement of A by H in
context C[]. Also we use Var(s) for referring to the set of variables occurring
in the syntactic object s, whereas θ[Var(s)] denotes the substitution obtained
from θ by restricting its domain, Dom(θ), to Var(s).

Definition 1 (Admissible Steps) Let Q be a goal and let σ be a substitu-
tion. The pair 〈Q; σ〉 is a state and we denote by E the set of states. Given
a program P, an admissible computation is formalized as a state transition
system, whose transition relation→AS ⊆ (E ×E) is the smallest relation satis-
fying the following admissible rules 2 (where we always consider that A is the
selected atom in Q):

1) 〈Q[A]; σ〉→AS〈(Q[A/v&iB])θ; σθ〉 if θ = mgu({H = A}), 〈H←iB; v〉 in P.
2) 〈Q[A]; σ〉→AS〈(Q[A/⊥]); σ〉 if there is no rule in P whose head unifies A.

Formulas involved in admissible computation steps are renamed apart before
being used. Note also that the second rule is introduced to cope with (possi-
ble) unsuccessful admissible derivations. When needed, we shall use the sym-

1 Let mgu(E) denote the most general unifier of an equation set E (see [22] for a
formal definition of this concept).
2 Note that the first case subsumes the second case in the original definition pre-
sented in [17], since a fact H ← is really the rule H ← ⊤. However, from a practical
point of view, when an admissible step is performed with a fact, we abbreviate the
step “〈Q[A];σ〉→AS 〈(Q[A/v&i⊤])θ;σθ〉” by “〈Q[A];σ〉→AS〈(Q[A/v])θ;σθ〉”, since
&̇i(v,⊤) = v.
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bols →AS1 and →AS2 to distinguish between specific admissible steps. Also,
when required, the exact program rule used in the corresponding step will be
annotated as a super-index of →AS. Also the symbols →+

AS and →∗
AS denote,

respectively, the transitive closure and the reflexive, transitive closure of→AS.

Definition 2 Let P be a program and let Q be a goal. An admissible deriva-
tion is a sequence 〈Q; id〉 →∗

AS 〈Q
′; θ〉. When Q′ is a formula not containing

atoms, the pair 〈Q′; σ〉, where σ = θ[Var(Q)], is called an admissible com-
puted answer (a.c.a.) for that derivation.

If we exploit all atoms of a goal, by applying admissible steps as much as
needed during the operational phase, then it becomes a formula with no atoms
which can be then directly interpreted in the multi-adjoint lattice L.

Definition 3 (Interpretive Step) Let P be a program, Q a goal and σ a
substitution. We formalize the notion of interpretive computation as a state
transition system, whose transition relation →IS⊆ (E ×E) is the smallest one
satisfying: 〈Q[@(r1, . . . , rn)]; σ〉→IS〈Q[@(r1, . . . , rn)/@̇(r1, . . . , rn)];σ〉, where @̇
is the truth function of connective @ in the lattice 〈L,�〉 associated to P.

Definition 4 Let P be a program and 〈Q; σ〉 an a.c.a., that is, Q is a goal not
containing atoms. An interpretive derivation is a sequence 〈Q; σ〉 →∗

IS 〈Q
′; σ〉.

When Q′ = r ∈ L, 〈L,�〉 being the lattice associated to P, the state 〈r; σ〉 is
called a fuzzy computed answer (f.c.a.) for that derivation.

We denote by→+
IS and→∗

IS the transitive closure and the reflexive, transitive
closure of →IS, respectively. Usually, we refer to a complete derivation as the
sequence of admissible/interpretive steps of the form 〈Q; id〉 →∗

AS 〈Q
′; σ〉 →∗

IS

〈r; σ〉 (sometimes we denote it by 〈Q; id〉 →∗
AS/IS 〈r; σ〉) where 〈Q′; σ[Var(Q)]〉

and 〈r; σ[Var(Q)]〉 are, respectively, the a.c.a. and the f.c.a. for the derivation.
Also note that, sometimes, when it is not important to pay attention on the
substitution component of a f.c.a. 〈r; θ〉 (maybe, because θ = id) we shall refer
to the value component r as the “f.c.a.”.

In the following, we denote by FCA(E) the set of f.c.a.’s of a given expres-
sion (goal) E. Formally, FCA(E) = {〈r; θ〉 | 〈E; id〉 →∗

AS/IS 〈r; σ〉, r ∈ L, θ =
σ[Var(E)]} which can be generalized to a set of expressions E1, . . . , En as
FCA(E1, . . . , En) = FCA(E1) ∪ · · · ∪ FCA(En). Moreover, in order to give
a measure of the computational effort needed to compute such set of f.c.a.’s
for a given expression E, we denote by [[FCA]](E) the total sum of admissi-
ble/interpretive steps needed to generate the whole set FCA(E). An evalua-
tion step contributing to reach one or more solutions for a given expression
E, is only counted once when computing FCA(E).
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3 Partial Evaluation of Multi-Adjoint Logic Programs

This section formalizes the basic notions involved in the partial evaluation
of multi-adjoint logic programs. Some of these concepts were introduced in a
preliminary version appeared in [23]. We start with the concept of resultant.

Definition 5 (Resultant) Let P be a program and Q a goal. Given the se-
quence of admissible and interpretive steps 〈Q; id〉 →+ 〈Q′; σ〉, whose length
is strictly greater than zero, we define the resultant of this derivation 2 as:
〈Qσ ← Q′ ;⊤〉, where “←” is any implication with an adjoint conjunctor.

Observe that, in contrast with the operational semantics defined in Section 2.2,
admissible and interpretive steps can be interleaved in any order. In practice
we will give preference to the interpretive steps over the admissible steps
during the PE process. This method resembles the normalization technique 3

introduced in the context of functional logic programming to reduce the non-
determinism of a computation [24]. In the sequel we call normalization the
sequence of interpretive steps performed before an operational unfolding step.

Also, note that the “rule” component of a resultant is not in general a rule,
since goal Q stands for an aggregation of atomic formulas. A resultant is
particularly significant when the original goal Q is an atomic formula A, since
then, the resultant 〈Aσ ← Q′ ;⊤〉 is a pair 〈rule; truth degree〉 which is a
constituent of the transformed program. The following example illustrates the
intuition behind the notion of resultant.

Example 6 Given the lattice ([0, 1],≤), where “≤” is the usual order on real
numbers, let P be the following multi-adjoint logic program, where labels G and
L on program rules refer to Gödel’s intuitionistic logic and  Lukasiewicz logic,
respectively:

R1 : 〈p(a)←L q(X, a); 0.7〉

R2 : 〈p(a)←G s(Y ); 0.5〉

R3 : 〈p(Y )←G q(b, Y )&L t(Y ); 0.8〉

R4 : 〈q(b, a)← ; 0.9〉

R5 : 〈s(a)←G t(a); 0.5〉

R6 : 〈s(b)←L t(b); 0.8〉

R7 : 〈t(a)←L p(X); 0.9〉

R8 : 〈t(b)←G q(X, a); 0.9〉

Now, we can build the following derivation in P, starting from goal p(X):

2 Note that, in general, the derivation may possibly be incomplete.
3 In a normalizing narrowing strategy, a term is rewritten to its normal form before
a narrowing step is applied. This procedure is also applied in narrowing-based PE
and narrowing-based fold/unfold transformation techniques.
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〈p(X); id〉→AS1
R1〈0.7&Lq(X1, a); {X/a}〉→AS1

R4〈0.7&L0.9; {X/a, X1/b}〉

whose resultant is 〈p(a)← 0.7&L0.9; 1〉 . Note that, an admissible step per-

formed with this resultant on goal p(X) mimics the effects of the two admissible
steps of the former derivation.

Therefore, the resultant encapsulates the whole information of the original
derivation for goal A in a single step (hence its name). It also compiles the
information of the truth degree inside the body of the resultant. So, in order
to reproduce the effect of the original derivation, it suffices that the associated
truth degree component of the resultant be the top value of lattice L.

The partial evaluation of an atomic goal is defined by firstly constructing an
incomplete search tree for that goal and then, extracting the specialized defin-
ition —the resultants— from the root-to-leaf branches. Hence, before defining
this concept, we precise the introduction of the following notion of unfolding
tree.

Definition 7 (Unfolding tree) Let P be a program and let Q be a goal. An
unfolding tree τϕ for P and Q (using the computation rule 4 ϕ) is a set of
〈goal; substitution〉 pair nodes satisfying the following conditions:

(1) The root node of τϕ is 〈Q ; id〉, where id is the identity substitution.
(2) If Ni ≡ 〈Q[A]; σ〉 is a node of τϕ and assuming that ϕ(Q) = A is the

selected atom, then for each rule Rj ≡ 〈H ← B; v〉 in P, with θ =
mgu({H = A}), Nij ≡ 〈(Q[A/v&B])θ; σθ〉 is a node of τϕ.

(3) If Ni ≡ 〈Q[@(r1, . . . , rn)]; σ〉 is a node of the unfolding tree τϕ then,
Nij ≡ 〈Q[@(r1, . . . , rn)/@̇(r1, . . . , rn)]); σ〉 is a node of τϕ.

As defined in [20,18], the second and third cases relate to the application of an
operational unfolding step and an interpretive unfolding step, respectively. An
incomplete unfolding tree is an unfolding tree which, in addition to completely
evaluated leaves, may also contain leaves where no atom (or interpretable
expression) has been selected for a further unfolding step, which allows us to
finish derivations at any adequate point.

Definition 8 (Partial evaluation of an atom) Let P be a program, A be
an (atomic) goal, and τ a (possibly incomplete) finite unfolding tree for P and
A, containing at least one non-root node. Let {Qi | i = 1, . . . , k} be the leaves
of the branches of τ , and let P ′ = {〈Aσi ← Qi ;⊤〉 | i = 1, . . . , k} be the set
of resultants associated to derivations {〈A ; id〉 →+ 〈Qi ; σi〉 | i = 1, . . . , k}.

4 A computation rule is a function that, when applied to a query Q, outputs one
of the atoms of Q to be evaluated by an admissible step. Note that a computation
rule may select an atom for which no admissible step is possible.
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Then, the set P ′ is called a partial evaluation of A in P (using τ).

Example 9 Given the program P of Example 6, we can construct the follow-
ing unfolding tree with depth 3 (that is, all its branches have been unfolded no
more than 3 steps) for program P and atom p(X):

p(X)

0.7&Lq(X1, a)

R1 θ

0.7&L0.9

0.6

R4 θ

0.5&Gs(Y2)

R2 θ

0.5&G(0.5&Gt(a))

R5 θ

0.5&G(0.5&G(0.9&Lp(X4)))

R7 θ

0.5&G(0.8&Lt(b))

R6 θ

0.5&G(0.8&L(0.9&Gq(X5, a)))

R8 θ

0.8&G(q(b, Y3)&Lt(Y3))

R3 σ

0.8&G(0.9&Lt(a))

R4 θ

0.8&G(0.9&L(0.9&Lp(X6)))

R7 θ

Depicting the figure, we have followed these conventions: the substitution com-
ponent of each node is annotated as a label of the arc connecting that node and
its parent node (the only exception is the root node, whose associate substitu-
tion is by default the identity substitution, id); by the sake of simplicity, sub-
stitutions are restricted to variables of the initial goal, hence: θ = {X/a} and
σ = {X/Y3}. Note also that, as usual in classical resolution procedures, rules
in admissible steps are taken standardized apart, whereas those nodes where
a normalization sequence (of interpretive steps) has been applied, generating
a new additional node, are surrounded by boxes. From the above incomplete
unfolding tree we obtain the following set of resultants:

R′
1 : 〈p(a)← 0.6; 1〉

R′
2 : 〈p(a)← 0.5&G(0.5&G(0.9&L p(X4))); 1〉

R′
3 : 〈p(a)← 0.5&G(0.8&L(0.9&Gq(X5, a))); 1〉

R′
4 : 〈p(a)← 0.8&G(0.9&L(0.9&Lp(X6))); 1〉

It is easy to extend Definition 8 to sets of atomic formulas. If S is a finite set
of atoms, then a partial evaluation of S in P (also called a partial evaluation
of P with respect to S) is the union of the partial evaluations of the elements
of S in P. Moreover, the restriction to specialize atom goals is not a severe
limitation in order to prevent the specialization of more complex goals, if we
convey to specialize their components by separate 5 . Given a program P and

5 However, it is necessary to admit that some opportunities to achieve a good spe-
cialization are lost. This can be avoided by introducing some particular techniques
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a complex goal Q, assuming that S = {B1, . . . , Bn} is the set of the atomic
constituents of Q, the partial evaluation of Q in P is the partial evaluation of
P with regard to S.

4 Reductants versus PE-reductants

In this section we recall from [17] the notion of reductant and, after estab-
lishing the relationship between the construction of reductants and techniques
coming from the field of partial evaluation, we override the original definition
by proposing our improved notion of PE-reductant. But let us firstly state the
relevance of reductants and discuss more deeply the problems they introduce
in the framework of multi-adjoint logic programming.

Reductancts were introduced in the context of multi-adjoint logic program-
ming to cope with a problem of incompleteness that arises when dealing with
some (non totally-ordered) lattices. In general, it might be not possible to
compute the greatest correct answer (for a given goal and program) when
considering a partially ordered lattice (L,�) [17]. For instance, let a, b be
two non comparable elements in L; assume that for a (ground) goal A there
are only two (fact) rules (〈A←; a〉 and 〈A←; b〉) whose heads directly match
with it; the first rule contributes with truth degree a, and derives the fuzzy
computed answer a (with empty substitution); similarly, the second one con-
tributes with b, and derives the fuzzy computed answer b; therefore, by the
soundness theorem of multi-adjoint logic programming [17], both a and b are
correct answers and hence, by definition of correct answer [17], the supremum
(or lub, least upper bound) sup{a, b}, is also a correct answer; however, since
there exists c = sup{a, b} in L, our computational principle, as described in
Section 2.2, will never return c as a computed answer, thus implying that
completeness would be lost. The above problem can be solved by extending
the original program with an special rule 〈A←sup{a, b};⊤〉, the so called re-
ductant, which allows us to obtain the supremum of all the computational
contributions to A.

The above discussion shows that a multi-adjoint logic program, interpreted
inside a partially ordered lattice, needs to contain all its reductants in order
to guarantee the completeness property. This obviously increases both the
size and execution time of the final “completed” program. However, this neg-
ative effects can be highly diminished if the proposed reductants have been
partially evaluated before being introduced in the target program: the compu-

which are able to adequately reorder and split up complex goals into smaller pieces
before considering them for specialization, as it has been proposed in the field of
conjunctive partial deduction [25,26].
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tational effort done (once) at generation time would be avoided (many times)
at execution time. In what follows, we are interested in showing how a refined
notion of a reductant can be constructed using PE techniques in order to solve
the problems detailed before. The starting point is the original definition pre-
sented in [17], where the classical notion of reductant was initially adapted to
the multi-adjoint logic programming framework in the following terms:

Definition 10 (Reductant [17]) Let P be a program, A a ground atom,
and 〈Ci←i Bi; vi〉 the (non empty) set of rules in P whose head matches with
A (i.e., there are θi such that A = Ciθi). A reductant for A in P is a rule
〈A← @(B1, . . . ,Bn)θ;⊤〉 where θ = θ1 · · · θn, ← is any implication with an
adjoint conjunctor, and the truth function for the intended aggregator @ is
defined as @̇(b1, . . . , bn) = sup{v1&̇1b1, . . . , vn&̇nbn}.

Now we are going to show how Definition 10 can be improved, leading to a
more flexible approximation to this concept, by using proper notions of partial
evaluation. So, using an arbitrary unfolding tree, τ , for a program P and a
ground atom A, it is possible to construct a more refined version of the notion
of a reductanct which we call PE-reductant for A in P. The main novelty of
the following definition (which generalizes a very close, precedent notion of
PE-reductant, that we firstly introduced in [23]), is the fact that it is directly
based on the set of leaves of a given unfolding tree. Similarly to the previous
definition, in the sequel we assume that ← is the implication of any adjoint
pair 〈←, &〉.

Definition 11 (PE-reductant) Let P be a program, A a ground atom, and
τ an unfolding tree for A in P . A PE-reductant for A in P with respect
to τ , is a rule 〈A← @sup(D1, . . . ,Dn);⊤〉, where the truth function for the
intended aggregator @sup is defined as @̇sup(d1, . . . , dn) = sup{d1, . . . , dn}, and
D1, . . . ,Dn are, respectively, the leaves of τ .

Observe that our definition of PE-reductant respects the syntax of our ex-
tended language (Section 2.1), where truth degrees and adjoint conjunctions
are really allowed in the body of program rules. As in the case of resultants,
PE-reductants incorporate information about all the relevant aspects of the
rules 〈Ci←i Bi; vi〉 used for the evaluation of the atom A: the truth degree
vi, the adjoint implication and conjunction operators, the computed substitu-
tions and the instances of the bodies Bi. On the other hand, in the particular
case in which the tree used in Definition 11 is unfolded only one step (assum-
ing that {〈Ci←iBi; vi〉 ∈ P | there is a θi, A = Ciθi} is the -nonempty- set of
rules in P whose heads match with A) then, the resulting PE-reductant is the
rule 〈A←@sup((v1&1B1)θ1, . . . , (vn&nBn)θn);⊤〉, whose shape greatly mirrors
Definition 10.

Example 12 Given the lattice ([0, 1],�), where “�” is the usual order on

12



real numbers, consider the following multi-adjoint logic program P:

R1 : 〈p(a)←L q(X,a); 0.7〉

R2 : 〈p(a)←G s(Y ); 0.5〉

R3 : 〈p(Y )← ; 0.6〉

R4 : 〈p(Y )←G q(b, Y )&L t(Y ); 0.8〉

R5 : 〈q(b, a)← ; 0.9〉

R6 : 〈s(a)←G t(a); 0.5〉

R7 : 〈s(b)← ; 0.8〉

R8 : 〈t(a)←L p(X); 0.9〉

The one-step unfolding tree for program P and atom p(a) is:

〈p(a); id〉

〈0.7&Lq(X1, a); id〉

R1

〈0.5&Gs(Y2); id〉

R2

〈0.6; {Y3/a}〉

R3

〈0.8&G(q(b, a)&Lt(a)); {Y4/a}〉

R4

from which we obtain the PE-reductant:

〈p(a)← @sup(0.7&Lq(X1, a), 0.5&Gs(Y2), 0.6, 0.8&G(q(b, a)&Lt(a))); 1〉.

On the other hand, it is important to contrast the similarities/ differences
between this rule and the reductant that the application of Definition 10 would
have produced: 〈p(a)← @(q(X1, a), s(Y2), 1, q(b, a)&Lt(a)); 1〉, where @̇ is de-
fined by @̇(b1, b2, b3, b4) = sup{0.7&̇Lb1, 0.5&̇Gb2, 0.6, 0.8&̇Gb4}.

This particular case of PE-reductant which uses a one-step unfolding tree,
conforms with the original definition of reductant appeared in [17]. In partic-
ular, the following result shows that both kinds of reductants are semantically
equivalent 6 , since they have the same value when they are interpreted.

Theorem 13 Let P be a program, A a ground atom and R ≡ 〈A← @(B1, . . . ,
Bn)θ;⊤〉 the reductant for A in P, where θ = θ1 · · · θn and each substitution
θi is a matcher of A and the head of a rule 〈Ci←i Bi; vi〉. The PE-reductant
R′ ≡ 〈A←@sup(D1, . . . ,Dn);⊤〉 (where Di ≡ vi&iBiθ, 1 ≤ i ≤ n) obtained
from an unfolding tree of depth one for P and A, is semantically equivalent to
the reductant R.

PROOF. In order to state the semantic equivalence between both notions of
reductants it suffices to prove that I(@(B1, . . . ,Bn)θ) = I(@sup(D1, . . . ,Dn)).
First note that, the rules Ci←i Bi whose head matches with A, are taken
standardized apart. Moreover, the atom A is ground. Therefore, the substi-
tutions θi, such that A = Ciθi, do not share variables in common either in

6 The procedural counterpart of this result is proved in Section 5 (see Theorem 18).
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their domains or in their ranges. Hence, θ = θ1θ2 · · · θn = θ1 ∪ θ2 ∪ · · · ∪ θn.
Then:

I(@(B1, . . . ,Bn)θ) = I(@(B1θ, . . . ,Bnθ))

= I(@(B1θ1, . . . ,Bnθn))

= @̇(I(B1θ1), . . . , I(Bnθn))

= sup{v1&̇1I(B1θ1), . . . , vn&̇nI(Bnθn)}

= sup{I(v1&1B1θ1), . . . , I(vn&nBnθn)}

= sup{I(D1), . . . , I(Dn)}

= @̇sup(I(D1), . . . , I(Dn))

= I(@sup(D1, . . . ,Dn)),

which concludes the proof.

It is noteworthy that a PE-reductant can be constructed by using the notion
of unfolding tree in the following way.

Definition 14 (Construction of PE-reductants) Let P be a program and
let A be a ground atomic goal. We can enumerate the following steps in the
construction of a PE-reductant of A in P:

(1) Construct an unfolding tree, τ , for P and A, that is, the tree obtained by
unfolding the atom A in the program.

(2) Collect the set of leaves S = {D1, . . . ,Dn} in τ .
(3) Construct the rule 〈A← @sup(D1, . . . ,Dn);⊤〉, which is the PE-reductant

of A in P with regard to τ .

The following example presents a PE-reductant obtained from an unfolding
tree of depth 3 (all its branches have been unfolded no more than 3 steps).

Example 15 Let P be the program of Example 12 and consider atom p(a). In
the next figure, nodes where normalization steps have been applied, producing
additional nodes, are remarked by boxes.
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〈p(a); id〉

〈0.7&Lq(X1, a); id〉

R1

〈0.7&L0.9; {X1/b}〉

〈0.6; {X1/b}〉

R5

〈0.5&Gs(Y2); id〉

R2

〈0.5&G(0.5&Gt(a)); {Y2/a}〉

R6

〈0.5&G(0.5&G(0.9&Lp(X5))); {Y2/a}〉

R8

〈0.5&G0.8; {Y2/b}〉

〈0.5; {Y2/a}〉

R7

〈0.6; {Y3/a}〉

R3

〈0.8&G(q(b, a)&Lt(a)); {Y4/a}〉

R4

〈0.8&G(0.9&Lt(a)); {Y4/a}〉

R5

〈0.8&G(0.9&L(0.9&Lp(X6))); {Y4/a}〉

R8

After collecting the leaves of this unfolding tree, we obtain the following PE-
reductant: 〈p(a) ← @sup(0.6, 0.5&G(0.5&G(0.9&Lp(X5))), 0.5, 0.6, 0.8&G(0.9&L

(0.9&Lp(X6)))); 1〉.

Since this formulation is based on partial evaluation techniques, it can be seen
as a method that produces a specialization of a program with respect to an
atomic goal which, in particular, means that it is able to compute the greatest
correct answer for that goal too. Moreover, although for the same program P
and a ground atom A, it is possible to derive distinct reductants, depending
on the precision of the underlying unfolding tree, we claim the remarkable fact
that all of them are able to compute the same greatest correct answer for the
ground goal A.

To finish this section, we wish to introduce a brief comment about our running
examples. We have seen that PE techniques are in general useful for differ-
ent software engineering purposes, independently of the partial/total ordering
among the elements of the underlying lattices associated to fuzzy programs.
For the sake of simplicity, all the previous examples, specially those illustrat-
ing the generation of unfolding trees in Sections 3 and 4, only consider the
simple case corresponding to lattice ([0, 1],≤). However, as we also advanced
in the introduction section, (PE-)reductants are really interesting only when
we consider partially ordered lattices. For this reason, all the examples we
provide in the sequel use this kind of more complex lattices.

5 Formal Properties of PE-reductants

In this section we establish the formal correctness properties of PE-reduc-
tants, starting with the procedural properties and following with their seman-
tic counterparts.
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As we have seen in the previous section, it is important to note that the original
notion of reductant as well as our improved definition of PE-reductant, are
both referred to ground atoms. On the other hand, the substitution component
of any fuzzy computed answer, for a given ground atom A, is irrelevant. So, in
this section, we will take advantage of these facts when defining and formally
proving our main results. In particular, in what follows, we will use with no risk
a simpler version (where the second component —substitution— of a f.c.a. is
dropped out) of the notions of FCA and [[FCA]] introduced in Section 2. That
is, from now, FCA(E) = {r ∈ L | 〈E; id〉 →∗

AS/IS 〈r; σ〉}, whereas [[FCA]](E)
is the total sum of admissible/interpretive steps needed to generate the whole
set FCA(E).

Moreover, for readability reasons too, in the sequel we will use the words PE1-
reductant and PEk-reductant for referring to those PE-reductants which are
obtained from unfolding trees of depth 1 and depth k, respectively.

5.1 Procedural Correctness and Efficiency

This section is devoted to establish that the classical notion of reductant,
according Definition 10, the PE1-reductant and the PEk-reductant contribute
with the same fuzzy computed answer for a ground goal A in a program P
and, therefore, they can be considered equivalent under a procedural point
of view. In addition, we will also prove that the notion of PEk-reductant is
more efficient than the one defined in [17], in the sense that, by using a PEk-
reductant we can obtain fuzzy computed answers for a given goal with a lesser
computational effort than by using the ordinary reductans of [17]. In order to
achieve this goal, we firstly formalize the following preparatory result.

Lemma 16 Given an unfolding tree τ for a program P and a ground atom
A, let E1 and E2 be expressions (nodes) of τ , such that there exists a one-step
derivation of the form E1 →AS/IS E2. Then,

(1) FCA(E2) ⊆ FCA(E1), and
(2) [[FCA]](E2) < [[FCA]](E1).

PROOF. We prove each claim of the Lemma separately:

(1) It suffices to show that, for each value r ∈ FCA(E2), then r ∈ FCA(E1).
By hypothesis, there exists a one-step derivation D : 〈E1; id〉 →AS/IS

〈E2; σ〉 and moreover, since r ∈ FCA(E2), there also exists a derivation
D′ : 〈E2; id〉 →∗

AS/IS 〈r; σ′〉. Now, by composing both derivations D and
D′, we have the new derivation D′′ : 〈E1; id〉 →AS/IS 〈E2; σ〉 →∗

AS/IS

〈r; σσ′〉, which justifies that r ∈ FCA(E1), as we wanted to prove.
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(2) This claim trivially follows from the fact that the previous derivation D′′

has just one step more (the first one, associated to D) than D′, that is
length(D′) < length(D) + length(D′) = 1 + length(D′) = length(D′′),
which directly implies that [[FCA]](E2) < [[FCA]](E1).

The following proposition proves that, given an unfolding tree of a ground
atom A and a program P, the set of fuzzy computed answers of a node (state)
E is the union of the sets of fuzzy computed answers of its successor states
(that is, those nodes obtained from E after executing an admissible or inter-
pretive step).

Proposition 17 Given an unfolding tree τ for a program P and a ground
atom A, containing at least one non-root node, let E be an expression (node)
of τ and let U(E) = {E ′ | E →AS/IS E ′} be the set of successors of E. Then,
FCA(E) =

⋃

Ei∈U(E)FCA(Ei).

PROOF. If E is not a value of L and for a certain index i there is a step
E →AS/IS Ei, by the first claim of Lemma 16, we have that FCA(Ei) ⊆
FCA(E) and, by definition of union, we can conclude that

⋃

Ei∈U(E)

FCA(Ei) ⊆ FCA(E)

On the contrary, if r ∈ FCA(E), we shall prove that r is a f.c.a. of the set
⋃

Ei∈U(E) FCA(Ei). Since r ∈ FCA(E), there exists a derivation E →n
AS/IS r,

for which we consider two cases:

- if n = 0, then E is a value of L and the result vacuously holds.
- if n > 0, let Ej be the expression verifying 〈E; id〉 →AS/IS 〈Ej ; σ〉 →

n−1
AS/IS

〈r; θ〉. Then, r ∈ FCA(Ej) ⊆
⋃

Ei∈U(E)FCA(Ei), as we wanted to prove.

Now, we are ready to prove the first main result of this section, which is per-
fectly symmetrical to Theorem 13, but focusing now in procedural aspects
instead in semantic notions. More exactly, we prove that the reductant con-
sidered in Definition 10 and the PE1-reductant are procedurally equivalent.

Theorem 18 Let P be a program, A a ground atom and R ≡ 〈A← @(B1, . . . ,
Bn)θ;⊤〉 the reductant for A in P, where θ = θ1 · · · θn and each substitution
θi is a matcher of A and the head of a rule 〈Ci←i Bi; vi〉. The PE1-reductant
R′ ≡ 〈A←@sup(D1, . . . ,Dn);⊤〉 (where Di ≡ vi&iBiθ, 1 ≤ i ≤ n) obtained
from an unfolding tree of depth one for P and A, is procedurally equivalent to
the reductant R.
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PROOF. In order to state the procedural equivalence between both notions
of reductants it suffices to prove that FCA(@(B1, . . . ,Bn)θ) = FCA(@sup(D1,
. . . ,Dn)). Due to Proposition 17, if we first perform all the admissible steps
with the PE1-reductant before performing the interpretive ones, we obtain
with both reductants the same admissible computed answers (for atom A).
Moreover, by the strong correctness of the transformation of interpretive un-
folding (see [18]), the interpretive phase considered in [17] leads to the same
fuzzy computed answers than the execution of all the interpretive steps defined
in [18].

Till here, we have connected the notion of classical reductant with the one of
PE1-reductant, by proposing equivalence results at a semantic and a proce-
dural level (Therorems 13 and 18, respectively). From here, our interest is also
to establish equivalence links between PE1-reductants and PEk-reductants
(Theorem 19). Moreover, we also show that as much a PE-reductant is par-
tially evaluated, the gains in efficiency are more relevant at execution time
(Theorem 20).

The following result shows, in a simple formulation, that the f.c.a.’s of the ex-
pressions in the leaves of an unfolding tree associated to the PE1-reductant, for
a ground atom A in a program P, coincide with the f.c.a.’s of the expressions
in the leaves of an unfolding tree associated to the PEk-reductant. Therefore,
the PE1-reductant and the PEk-reductant are procedurally equivalent.

Theorem 19 (Procedural Correctness) If R1 = 〈A← @sup(D1, . . . ,Dn);
⊤〉 and Rk = 〈A← @sup(D′

1, . . . ,D
′
m);⊤〉 are, respectively, the PE1-reductant

and the PEk-reductant for a ground atom A in a program P, then, R1 and Rk

are procedurally equivalent, that is, FCA(D1, . . . ,Dn) = FCA(D′
1, . . . ,D

′
m).

PROOF. By Proposition 17, we know that FCA(A) = FCA(D1, . . . ,Dn) =
FCA(D1) ∪ · · · ∪ FCA(Dn) and also, each FCA(Di) = FCA(Bi1 , . . . ,Bir),
where Bi1 , . . . ,Bir are all the successors of Di, which are the formulas in body
of the PE2-reductant. Following this way as far as reaching the nodes of depth
k, we obtain FCA(A) = FCA(D′

1, . . . ,D
′
m) and the result is verified.

And now, we are able to introduce the following result which complements the
previous one by confirming the gains in efficiency achieved by PEk-reductants
in comparison with PE1-reductants.

Theorem 20 (Procedural Efficiency) If R1 = 〈A← @sup(D1, . . . ,Dn);⊤〉
and Rk = 〈A← @sup(D′

1, . . . ,D
′
m);⊤〉 are, respectively, the PE1-reductant and

the PEk-reductant of a ground atom A in a program P, then, Rk is more ef-
ficient than R1 when k>1, that is, [[FCA]](D1, . . . ,Dn)>[[FCA]](D′

1, . . . ,D
′
m).
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PROOF. This proof is perfectly analogous to the previous one used in The-
orem 19, but also exploiting now the second claim (instead of the first one) of
Lemma 16.

To finish this section, in the following corollary we connect at a procedural
level (as a direct consequence of Theorems 18 and 19) the notion of classical
reductant and our improved definition of PEk-reductant.

Corollary 21 Let R = 〈A← @(B1, . . . ,Bn);⊤〉, and Rk = 〈A←@sup(D1, . . . ,
Dm);⊤〉 be, respectively, a reductant according Definition 10 and a PEk-re-
ductant of a ground atom A in P. Then R and Rk are procedurally equivalent,
that is, FCA(@(B1, . . . ,Bn)) = FCA(@sup(D1, . . . ,Dm)).

In the following sub-section we plan to reach a similar result to the previous
corollary, but focusing now in semantic properties.

5.2 Semantic Correctness

In Theorem 13 we proved that the concept of an ordinary reductant (see
Definition 10) and the notion of PE1-reductant, were semantically equivalent.
Now we are going to establish that the interpretation of the PE1-reductant is
greater or equal than the interpretation of the PEk-reductant (and therefore,
by transitivity, we will show that the interpretation of an ordinary reduc-
tant will be greater or equal than the interpretation of the PEk-reductant).
Surprisingly (at least when compared with pure logic programming), this is
the strongest result we can achieve in the fuzzy setting, as we are going to
detail in what follows.

In order to obtain this result, we need to introduce the immediate consequence
operator, TP , defined by van Emden and Kowalski, and extended in [17] for
the framework of multi-adjoint logic programming.

Definition 22 Let P be a multi-adjoint program, I an interpretation and
A a ground formula. We define the operator TP as a mapping in the set of
interpretations such that for each ground atom A

TP(I)(A) = sup{v&̇iI(Bθ) | 〈C←iB; v〉 ∈ P, A = Cθ}

This operator allows us to formalize the semantics of themulti-adjoint pro-
grams: the semantics of a program P is defined as the least fix point of TP . It
is possible to prove that the operator TP fulfills the following suitable property
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[17]: an interpretation I is a model of a multi-adjoint program P if, and only
if, TP(I) ⊆ I. Therefore, for every model I of P we have that

TP(I)(A) = sup{v&̇iI(Bθ) | 〈C←iB; v〉 ∈ P, A = Cθ} ≤ I(A)

Thus, the interpretation of a ground atom A, by a model I of P, is greater or
equal than the interpretation of the body of the PE1-reductant corresponding
to this atom.

Moreover, in general, the equality TP(I)(A) = I(A) does not hold. Roughly
speaking, it tells us that “as much as an atom is evaluated/interpreted, its
truth degree might even decrease”. The following example illustrates this fact.

Example 23 Let P be the following program, where A, B are any ground
atoms; let (L,≤) be the multi-adjoint lattice associated to P described by the
diagram of the figure below, in which we have also included the unfolding tree
for A in P. Let (&,←) be the adjoint pair in (L,≤) collected from the Gödel
intuistionistic logic, such that the truth functions for & and ← are defined

respectively by &̇(x, y) = inf{x, y} and ←̇(y, x) =











⊤, if x ≤ y

y, otherwise

R1 : 〈A← B; α〉

R2 : 〈A← ; β〉

⊤

γ

α β

⊥

〈A; id〉

〈α&B; id〉

R1

〈β; id〉

R2

Then, for every interpretation I : BP −→ L such that I(A) = ⊤, I(B) = γ,
I is a model of P since α&̇I(B) ≤ I(A), β ≤ I(A) and, moreover, it fulfills:
TP(I)(A) = sup{α&̇I(B), β} = sup{inf{α, γ}, β} = sup{α, β} = γ < ⊤ =
I(A).

The following Lemma will allow us to relate the interpretation of the body
of the PE1-reductant to the one of the body of the PE2-reductant, and as a
consequence, with the interpretation of the body of the PEk-reductant.

Lemma 24 Let A be a ground atom that matches with the head of the rules
〈C1←1B1; v1〉, . . . ,〈Ci←iBi; vi〉, . . . , 〈Cr←rBr; vr〉 in P (substitution θi being
such that Ciθi = A, one of the matchers). Assume that formula Biθi unifies
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with the head of rules 〈H1←1D1; u1〉, . . . , 〈Hs←sDs; us〉 in P. Then, if I is a
model of P, L2 ≤ L1, where:

• L1 = sup{v1&̇1I(B1θ1), . . . , vi&̇iI(Biθi), . . . , vr&̇rI(Brθr)}
• L2 =sup{v1&̇1I(B1θ1), . . . , vi&̇i(u1&̇

1I(D1σ1)), . . . , vi&̇i(us&̇
sI(Dsσs)), . . . ,

vr&̇rI(Brθr)}

Moreover, I(A) ≥ TP(I)(A) ≥ sup{v1&̇1I(B1θ1), . . . , vi&̇i(u1 &̇1 I(D1σ1)),
. . . , vi&̇i(us&̇

sI(Dsσs)), . . . , vr&̇rI(Brθr)}.

PROOF.

Since the atom Biθi unifies with the head of all the rules 〈H1←1D1; u1〉, . . . ,
〈Hs←sDs; us〉, there is θj such that (Biθi)θj = Hjθj , for each j = 1, . . . , s. By
the adjoint property, a model interpretation I of P fulfills that uj&̇jI(Djθj) ≤
I(Hjθj) = I((Biθi)θj) ≤ I(Biθi) for all j = 1, . . . , s and, since & is increasing
in both arguments, we have that vi&̇i(uj&̇jI(Djθj)) ≤ vi&̇iI(Biθi). By def-
inition of least upper bound, it turns out that sup{vi&̇i(u1 &̇1I(D1σ1)), . . . ,
vi&̇i(us&̇

sI(Dsσs))} ≤ vi&̇iI(Biθi) and therefore L2 ≤ L1.

Finally, if I is a model of P, we have I(A)≥TP(I)(A) ≥ sup{v1&̇1I(B1θ1), . . . ,
vi&̇i(u1&̇

1I(D1σ1)), . . . , vi&̇i(us&̇
sI(Dsσs)), . . . , vr&̇rI(Brθr)}, using the ine-

quality L1 ≥ L2.

Observe that rule 〈A← @sup(v1&1B1θ1, . . . , vi&iBiθi, . . . , vr&rBrθr);⊤〉, asso-
ciated with expression L1, is a PE1-reductant for the ground atom A in P,
and rule 〈A← @sup(v1&1B1θ1, . . . , vi&i(u1&

1D1σ1), . . . , vi&i(us&
sDsσs), . . . ,

vr&rBrθr);⊤〉, associated with expression L2, is a PE2-reductant.

If R1 = 〈A← @sup(D1, . . . ,Dn);⊤〉, R2 = 〈A← @sup(D′
1, . . . ,D

′
m);⊤〉 are,

respectively, a PE1-reductant and a PE2-reductant of a ground atom A in a
program P , then, as the following example shows, I(@sup(D1, . . . ,Dn)) and
I(@sup(D′

1, . . . ,D
′
m)) do not coincide in general (in concordance with the fact

we pointed out at the beginning of this section).

Example 25 Let P be the following program, where A and B are any ground
atoms; let (L,≤) be the multi-adjoint lattice associated to P described by the
diagram of the figure below and consider again the adjoint pair based on the
Gödel intuistionistic logic used in Example 23.
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R1 : 〈A← B; α〉

R2 : 〈A← ; β〉

R3 : 〈B← ; β〉

⊤

α β

⊥

〈A; id〉

〈α&B; id〉

R1

〈α&β; id〉

R3

〈β; id〉

R2

Then, given an interpretation I : BP −→ L such that I(A) = I(B) = ⊤, I
is a model of P since α&̇I(B) ≤ I(A), β ≤ I(A), β ≤ I(B). Moreover, the
PE1-reductant is the rule 〈A← @sup(D1,D2);⊤〉 = 〈A← @sup(α&B, β);⊤〉
and the PE2-reductant the rule 〈A← @sup(D′

1,D
′
2);⊤〉 = 〈A← @sup(α&β, β);

⊤〉, which fulfills:
I(@sup(D′

1,D
′
2)) = sup{α&̇β, β} = sup{inf{α, β}, β} = sup{⊥, β} = β <

⊤ = sup{α, β} = sup{inf{α,⊤}, β} = sup{α&̇I(B), β} =I(@sup(D1,D2)).

The following result complements at a semantic level the (procedural) The-
orem 19 by generalizing Lemma 24 and relating the interpretation (within a
model of P) of the bodies of PE1-reductants and PEk-reductants (for ground
atom A).

Theorem 26 (Semantic Correctness) IfR1 = 〈A← @sup(D1, . . . ,Dn);⊤〉
and Rk = 〈A← @sup(D′

1, . . . ,D
′
m);⊤〉 are, respectively, the PE1-reductant and

the PEk-reductant of a ground atom A in a program P, then,R1 andRk fulfills
I(@sup(D1, . . . ,Dn)) ≥ I(@sup(D′

1, . . . ,D
′
m)) where I is a model of P.

PROOF. The proof is made by recurrence. By Theorem 24, if I is a model
of P, I(@sup(D1, . . . ,Dn)) = L1 ≥ L2 = I(@sup(B′

1, . . . ,B
′
r)), where R′ =

〈A← @sup(B′
1, . . . ,B

′
r);⊤〉 is the PE2-reductant. Iterating the process k − 1

times (by unfolding, in every step, the formulas in the body of the reductant
that has been obtained in the previous step), we have that I(@sup(D1, . . . ,Dn))
≥ I(@sup(D′

1, . . . ,D
′
m)) where rule R′ = 〈A← @sup(D′

1, . . . ,D
′
m);⊤〉 is the

PEk-reductant, which concludes the proof.
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We finish this section in a similar way to the previous one, by proposing the
following corollary which this time connects at a semantic level (as a direct
consequence of Theorems 13 and 26) the notion of classical reductant and our
improved definition of PEk-reductant.

Corollary 27 Let R ≡ 〈A← @(B1, . . . ,Bn);⊤〉 and Rk ≡ 〈A←@sup(D1, . . . ,
Dm) ;⊤〉 be, respectively, a reductant according Definition 10 and a PEk-re-
ductant, k ≥ 1, of a ground atom A in a program P. Then, R and Rk fulfills
I(@(B1, . . . ,Bn)) ≥ I(@sup(D1, . . . ,Dm)).

6 Final Discussion

This section is devoted to relate both the underlying language and the trans-
formation techniques presented in this work with other approaches appeared in
the literature. At the same time, we also plan to provide some implementation
issues regarding our proposal.

Underlying language. As it was commented, our work is concerned with
the introduction of partial evaluation techniques for specializing programs
and computing efficient reductants. The selection of the underlying language
(based in the multi-adjoint logic programming approach of [15–17]) has been
mainly motivated by its high level of expressiveness as well as for its clear
procedural semantics. The first point is useful for increasing the relevance
and generality of our results, also contributing to a broader dissemination,
whereas the second point is crucial to effectively define our transformations
(in particular, for a formal definition of unfolding rules and partial evaluation
techniques, a procedural semantics formalized in terms of a state transition
system seems to be mandatory).

Regarding expressiveness, the multi-adjoint logic programming approach rep-
resents an extremely flexible fuzzy framework based on weighted rules, which
largely improves older approaches previously introduced in this field (see, for
instance, the Prolog–Elf system of [27], the Fril system of [28] and the fuzzy
variants of Prolog proposed in [29–31]). Moreover, in [32] 7 , the authors justify
the need for considering such a very abstract framework in order to be able
to state and prove general results on termination, fix-point semantics, query
answering procedures, etc..., which can apply to several apparently distinct
settings such as van Emden’s Quantitative Deduction, Possibilistic Logic Pro-

7 In this last work, a sorted version of the multi-adjoint logic language is proposed.
This extension does not seriously affect our techniques and therefore, in order to
preserve the readability of this paper and our methods, we postpone their adaptation
to the sorted case as future work.
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gramming, Non-classical SLD resolution, Ordinary Probabilistic Logic Pro-
grams and Probabilistic Deductive Databases.

Due to the increasing interest in models of reasoning under “imperfect” infor-
mation, we have observed, in recent years, the proliferation of an enormous
number of proposals for the integration of approximate reasoning into the con-
text of (classical) Logic Programming. Consequently, there exist some cases
not fully covered by the multi-adjoint logic approach. These are, for instance,
the cases of similarity-based [33] and annotated [34] logic programming. Nev-
ertheless, for the first case, we can find in [17] some (theoretical) analysis
establishing nice correspondences between both languages. In particular, it
can be proved that the effects of the similarity-based unification/resolution
methods of [33] can be somehow replicated (at a theoretical level) by ap-
plying the procedural mechanism seen here on multi-adjoint logic programs
augmented with special weighted rules which simulate similarity equations.
On the other hand, for the annotated logic programs of [34] and specially, for
the more recent (and much easier in its formulation) version of [35], we need
to make a more detained analysis.

In contrast with [35], most of the reported approaches (including the multi-
adjoint logic one 8 ) exhibit an important limitation, as they do not address
any mode of non-monotonic negation. We can compare this approach with the
one used along this paper at the following levels:

• Expressiveness. Apart from the fact that in the multi-adjoint logic ap-
proach the discussion is centered on the monotonic case, ignoring default
negation, the underlying notion of lattice is different from the concept of
bilattice [36]. Bilattices are slightly more general structure than lattices.
They are able to cope with non-monotonic negation and provide an elegant,
powerful way for combining belief and doubt degrees on program rules. Al-
though this gap of the multi-adjoint framework has been alleviated in [37]
by considering multiple sorts via the so called multi-lattices, the proposed
treatment seems to be anyway weaker than the one carried out in [35].
• Syntax. Program rules in [35] have the form A ← f(B1, . . . ,Bn) where

f is an operator interpreted as a computable truth combination function,
whereas A and Bi are atoms. Note that this syntax is very close to the
one used in the multi-adjoint logic approach, where as explicitly said in [32]
“sometimes, we will represent bodies of formulas as @[B1, . . . ,Bn], where
... @ is the monotone aggregator obtained as a composition” 9 . As seen so
far, both approaches are quite similar from a syntactic point of view, apart

8 In [32], authors claim that they “have already started the research in this direc-
tion”.
9 See also [38], where we provide a transformation operation called “aggregation”
which automatically adapts program rules to this clearer shape.
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from the different representation of lattices commented before. However,
no function symbols (apart of constants) are allowed in [35] where to ease
the presentation, the attention is limited to the propositional case (authors
argue that the “first order case can be handled by grounding”).
• Procedural semantics. Maybe the major differences between both ap-

proaches, emerge at the procedural semantics level. We have seen that the
formalization (as a transition system) presented in sub-section 2.2 was cru-
cial for effectively defining the construction of unfolding trees in Section
3. In [35] a general top-down query answering procedure for normal logic
programs over lattices and bilattices is provided. The method could be un-
derstood as a procedural semantics for such kind of programs, and has the
advantage that it can be instantiated for “mirroring” differen semantics (as
the Kripke-Kleene and the Well-Founded semantics) when evaluating goals.
Unfortunately, the query answering procedure is presented in an algorithmic
way which is far away from the desirable transition-system like formulation
traditionally used in program transformation tasks.

Now, putting together all the pieces presented before, we can extract the fol-
lowing three conclusions: i) the framework of [35] is a challenging approach for
which (once surpassed the propositional case and/or allowed the presence of
function symbols in its syntax) we are interested in the adaptation of our par-
tial evaluation techniques in order to capture important expressive resources
including non-monotonic negation; ii) in order to do this, it is mandatory to
previously investigate in new re-formulation ways of its procedural semantics
and query answering mechanisms; and iii) we think that the experience we can
accumulate developing the techniques proposed in this paper (for the multi-
adjoint logic approach), will largely help us to generalize our results to the
alternative fuzzy framework of [35] in the near future.

Tabulation techniques. As it was reported in [35], any logic programming
language should be accompanied with query answering procedures. In this
paper we are not directly concerned with this subject, having into account
that our main goals are twofold: i) to specialize programs; and ii) to generate
sophisticated (partially evaluated) reductants which, once added to original
programs, contribute to a correct, complete and efficient evaluation of goals
using the procedural semantics described in sub-section 2.2. Nevertheless, in-
spired by the tabulation goal-oriented query procedure presented in [39,40]
(for residuated and multi-adjoint logic programs) and extended in [32] (for
sorted multi-adjoint logic programs), we think that it is possible to improve
the efficiency of both, PE-reductant calculus and query answering w.r.t. those
programs generated by our partial evaluation techniques.

The underlying idea of tabulation (tabling, or memoising) is, essentially, that
atoms of selected tabled predicates as well as their answers are stored in a
table. When an identical atom is recursively called, the selected atom is not
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resolved against program clauses; instead, all corresponding answers computed
so far are looked up in the table and the associated answer substitutions are
applied to the atom. The process is repeated for all subsequent computed
answer substitutions corresponding to the atom.

Tabulation methods have been largely used in the past to increase the effi-
ciency of proof procedures. The usual SLD based implementations of Fuzzy
Logic Programming languages (e.g. [30]) are goal-oriented and inherit the
problems of non-termination and re-computation of goals. For grappling with
these problems, tabulation implementation techniques have been proposed
in the deductive databases and logic programming communities. More re-
cently, an extension of SLD for implementing generalised annotated logic
programs has been proposed in [34,41]. Following these ideas, the tabulation
goal-oriented query procedure provided in [32] is accompanied with interesting
termination results considering a significant class of sorted multi-adjoint logic
programs but only applicable to ground goals 10 .

It is important to note that in [32] complete trees are generated for executing
goals; hence, the termination results provided there are mandatory. However,
the use of tabulation techniques is neither directly dependent on the shape of
the generated trees (finite or infinite, partial or complete) nor on their final
use (query answering, goal solving, program transformation, partial evalua-
tion, etc.). On the other hand, partial evaluation techniques are also based on
the generation of (incomplete) search trees. Therefore, the more intelligent the
method for generating trees is (by using, for instance, tabulation or threshold-
ing techniques), the more efficient will be the final application of such trees in
practice. So, we think that tabulation techniques can be successfully embed-
ded inside a transformation task such as the partial evaluation method we are
dealing with.

In particular, the calculus of partial unfolding trees presented in Section 3
admits a tabulation based reformulation near to the one proposed in [32],
but with the advantage in our case that since we simply generate partial
trees during the PE process, we are not directly limited for any termination
constraint. In this sense, we also plan to take advantage of the experience
acquired in [42], where we introduced thresholding techniques for dynamically
reducing the size of unfolding trees. Our thresholding techniques have some
correspondences with the tabulation method used in [32] in the sense that
we also store/update/compare the current best truth degree associated to
a given (first order) atom when building its associated (partial) unfolding
tree. Anyway, more research is needed to relate tabulation and thresholding

10 In [32], although it is argued that there is no loss of generality since infinite
programs are allowed, authors also make the claim that it is important to extend
this technique to the first order case as future work.
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if we really want to take profit of their simultaneous use when computing
reductants, specializing programs and solving goals in the multi-adjoint logic
setting. In this sense, some prioritary lines of future work are:

• The techniques presented so far here as well as those described in [42] can
be extended to cope with the possibility of tabulating several thresholds
instead of a single one 11 .
• Our experience in managing trees where nodes contain atoms with variables,

might help to lift the tabulation method of [32] to both, the non-ground case
and the first-order case.
• Finally, we also think that the proper tabulated query answering proce-

dure of [32] admits an almost immediate characterization as a procedural
semantics muc more efficient than the one we have used along this paper.

Regarding this last point, we think that such (tabulation based) procedural
semantics can be conceived as an state transition system, where states might
contain tree forest instead of simple goals: the great amount of information
provided by forest will be the key point for to efficiently formulate the new
improved procedural mechanism.

Implementation issues. As we announced in [18], the implementation of
a prototype interpreter/compiler for the multi-adjoint logic language was a
prioritary task proposed as future work. In [43] we have recently reported our
preliminary results in such direction, also describing a powerful method for
translating fuzzy programs into directly executable standard Prolog code. The
final goal is that the compiled code be executed in any Prolog interpreter in a
completely transparent way for the final user, i.e., our intention is that after
introducing fuzzy programs and fuzzy goals to the system, it be able to return
fuzzy computed answers (i.e., pairs including truth degrees and substitutions)
even when all intermediate computations have been executed in a pure (not
fuzzy) logic programming environment.

Our approach is somehow inspired by [31], where an interpreter conceived
using Constraint Logic Programming over real numbers (CLP (R)) has been
efficiently implemented for a fuzzy logic language close to ours. Anyway, we
use the Prolog programming language without considering a CLP (R) exten-
sion, since it suffices for implementing our ideas. Nowadays, our systems only
deals with programs focusing in a simple lattice whose carrier set is the real
interval [0, 1] and the connectives are collected from standard fuzzy logic (as
the product,  Lukasiewicz and Gödel intuitionistic logic). Although the expres-

11 Note that in our case, since unfolding trees have been mainly used for computing
reductants, we only needed to generate a single tree for a given atom. However,
in the general case, when partial evaluation techniques are used for specialization
purposes, they really generate tree forest, which implies the need for tabulating
several values as it is similarly done in [32].
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sive power of our preliminary implementation is rather limited, a high-priority
task for future developments will be to let our system accept fuzzy programs
as well as multi-adjoint lattices in a parametric way, which implies the design
of appropriate protocols, interfaces, etc.

We have used Sicstus Prolog v.3.12.5 for executing fuzzy programs once trans-
lated to Prolog code, as well as for implementing the proper tool. Our parser
has been developed by using the classical DCG’s (Definite Clause Grammars)
resource of the Prolog language, since it is a convenient notation for express-
ing grammar rules. The application contains about 300 clauses and once it
is loaded inside a Prolog interpreter (in our case, Sicstus Prolog), it shows a
menu which includes (among others) options for:

• Loading a prolog file with extension ‘.pl’. This action is useful for reading
a file containing a set of clauses implementing aggregators, user predicates, etc.
Nevertheless, the original connectives of the Product, Gödel and  Lukasiewicz
logic, expressed in the Prolog style seen in the previous section, are defined in
file prelude.pl, which is automatically loaded by the system at the beginning
of each work session.

• Parsing a fuzzy program included in a file with extension ‘.fpl’. In order
to simultaneously perform the parsing process with the code generation, each
parsing predicate used in DCG’s rules, has been augmented with a variable as
extra argument which is intended to contain the Prolog code generated after
parsing the corresponding fragment of fuzzy code.

• Listing the set of Prolog clauses loaded from a ‘.pl’ file as well as those
ones obtained after compiling an ‘.fpl’ file. Of course, the original fuzzy
program contained in this last file is also displayed.

• Saving the resulting Prolog code into a file, and finally

• Executing a fuzzy goal after being introduced from the keyboard.

Therefore, our implementation system translates a multi-adjoint logic program
and goal to standard Prolog code, allowing the execution of fuzzy programs
inside a classical logic programming environment. A detailed explanation of
the implementation techniques we use can be found in [43].

It is important to note that, in our implementation system, all internal com-
putations (including compiling and executing) are pure Prolog derivations
whereas inputs (fuzzy programs and goals) and outputs (fuzzy computed an-
swers) have always a fuzzy taste, which generates the illusion on the user of be-
ing working with a purely fuzzy tool. However, when trying to go beyond goal
solving and program execution, our method becomes insufficient. In particular,
observe that we can only simulate complete fuzzy derivations (by performing
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the corresponding Prolog derivations based on SLD-resolution) but we can
not generate partial derivations or even apply a single admissible/interpretive
step on a given fuzzy expression. This kind of low-level manipulations are
mandatory when trying to incorporate to the tool mechanisms for generating
derivations of a fixed number of steps, rearranging the body of a program rule,
applying substitutions to its head, etc... in order to implement some program
transformation techniques such as the ones presented in this paper as well as
those described in [20,18,42].

To achieve this aim, we have conceived a new low-level representation for the
fuzzy code: each parsing predicate used in DCG’s rules (which already con-
tains a parameter allocating the Prolog code obtained after the compilation
process) has also been augmented with a second extra argument for stor-
ing now the new representation associated to the corresponding fragment of
parsed fuzzy code. Details on such low-level representation of the fuzzy code
can be found in [43]. Anyway, although the new method allows us nowadays to
build unfolding trees with any level of depth (observe that the correct manip-
ulation of the leaves of this kind of partially evaluated trees, opens the door
to produce unfolded rules, specialized program, PE-reductants, and so on),
we continue investigating on new implementation methods for extending the
tool. In particular, we are nowadays studying the recent proposal presented
in [32], where an implementation of the tabulation procedure discussed before
is underway using the GAP package of XSB Prolog, as well as a distributed
implementation for the use in the Semantic Web.

7 Conclusions and Further Research

In this work we have defined, for the first time, a partial evaluation technique
for multi-adjoint logic programs. We have shown its capability to specialize
programs, as it happens in other (declarative) programming contexts. More-
over, we have introduced a method for computing reductants based on partial
evaluation techniques, which constitutes a novel application for the multi-
adjoint logic programming framework. The established relationship between
reductants and its refined construction by means of partial evaluation tech-
niques, is an important issue if we really want to build complete and efficient
systems for the multi-adjoint logic programming framework. Such relation-
ships have been strengthened as much as possible, by providing formal proofs
regarding procedural and semantic correctness results, as well as efficiency
criteria.

As we advanced in the previous section, there are several ways for extend-
ing and improving the partial evaluation framework and the PE-reductant
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calculus presented in this work:

(1) To overcome the restriction to specialize atom goals separately, thus al-
lowing the specialization of more complex goals to achieve a better spe-
cialization. This can be done by introducing some particular techniques
able to adequately specialize aggregations of atoms, similarly as it has
been proposed in the field of conjunctive partial deduction [25,26] for the
specialization of conjunctions of atoms.

(2) To introduce more refined local control strategies, like methods based
on well-founded orders or well-quasi orders [11], instead of imposing an
arbitrary ad hoc depth bound for the unfolding. Also it is necessary to
introduce an effective procedure for the partial evaluation of a multi-
adjoint logic program with regard to a set of (goal) atoms. This problem
links with the definition of global control strategies. The global level of
control concerns with the termination of recursive unfolding, or how to
stop recursively constructing unfolding trees while still guaranteeing that
the desired amount of specialization is retained and that the semantic
correctness of the partial evaluation process is reached. Note that, when
a program is partially evaluated, the set of goals appearing in the ini-
tial set (with regard the specialization is performed) usually needs to
be augmented in order to obtain an effective specialization. These new
goals must be recursively unfolded (generating new unfolding trees in a
similar way as the tabulation technique of [32] generates tree forests) to
complete the specialization of the program. Therefore, to guarantee the
termination of the partial evaluation process is important to investigate
some appropriate technique able to keep this set finite.

(3) To improve the method for the construction of the so called PE-reduc-
tants by means of a refined algorithm based on unfolding with a set of
dynamic thresholds (we have some preliminary results in this line [42])
and tabulation techniques (in the style of [39,40,32]), in order to prune
tree branches and properly decide which nodes in the unfolding tree must
be selected to be exploited.

(4) To allow the presence of variables in the heads of PE-reductants. We
think that this action will be especially interesting in practice when con-
sidering that all the arguments in these heads be variables, since it might
be the key allowing us to attach the notion of reductant to a (finite) set
of predicate symbols instead to a (possibly infinite) set of ground atoms.

(5) Last, but no least, it would be interesting to investigate a new, more pow-
erful procedural semantics based on tabulation techniques [32] and cap-
turing non-monotonic negation [35] in order to increase both its efficiency
and expressiveness. In a second research stage, we think that those pro-
cedural mechanisms, once formulated as state transition systems, would
become excellent platforms to support improved partial evaluation and
other transformation techniques.
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