
On the Correctness of the Factoring
Transformation

Pascual Julián Iranzo1

Departamento de Informática
Universidad de Castilla–La Mancha

Ciudad Real, Spain
pjulian@inf-cr.uclm.es

Abstract. Non-deterministic computations greatly enhance the expres-
sive power of functional logic programs, but are often computationally
expensive. Recently we analyzed a program transformation, called factor-
ing transformation [4], that may save both execution time and memory
occupation in a non-deterministic computation. In this paper we study
the formal properties of our transformation, proving its correctness for
constructor-based left linear rewriting systems, under some well estab-
lished conditions. We also introduce some proof techniques that help us
to reason with this kind of rewriting systems.

1 Introduction

The aim of functional logic programming is to integrate the best features of both
functional and logic programming. Logic programming provides the use of predi-
cates and logical formulas. Logic programs have a great expressive power thanks
to the ability of logic languages of computing using logical variables, partial
data structures and an operational mechanism that permits a non-deterministic
search for answers. Functional programming is based on the concept of function.
In a functional program functions are defined by means of equations. The deter-
ministic evaluation of ground expressions increases the efficiency of functional
programs. The concept of evaluation strategies, that also increase the efficiency
of functional computations, relays on the existence and manipulation of nested
terms. The combination of these features makes functional logic languages both
more expressive than functional languages and more efficient than traditional
logic languages.

Non-determinism is an essential feature of these integrated languages, since
it allows problem solving using programs that are textually shorter, easier to

1 Supported by the Spanish Research Funding Agency (CICYT) TIC 2001-2705-
C03-01, by Acción Integrada Hispano-Italiana HI2000-0161, by Acción Integrada
Hispano-Alemana HA2001-0059, and the Valencian Research Council under grant
GV01-424.

understand and maintain, and more declarative than their deterministic coun-
terparts (see [2], [9] or [14] for several motivating examples).

In a functional logic programming language, non-deterministic computations
are modeled by the defined operations of a constructor-based left linear rewrite
system [2, 8]. The following emblematic example [8, Ex. 2] defines an operation,
coin, that non-deterministically returns either zero or one.

coin→ 0
coin→ s(0)

Rewrite systems with operations such as coin are non-confluent. A computa-
tion in these rewrite systems may have distinct normal forms and/or does not
terminate. Non-determinism abstracts the choice of one of several outcomes of a
computation. The outcome of a non-deterministic computation is selected some-
what randomly. For example, for the operation coin defined above, each solution,
0 or s(0), is equally likely to be produced. There is no feasible means of deciding
which replacement should be chosen at the time coin is evaluated. Therefore,
evaluation under both replacements must be considered. In general, to ensure
operational completeness, all the possible replacements of a non-deterministic
computation must be executed fairly. In fact, if one replacement is executed only
after the computation of another replacement is completed, the second replace-
ment will never be executed if the computation originated by a first replacement
does not terminate.

This approach, which we refer to as fair independent computations, captures
the intended semantics, but clearly it is computationally costly. For example,
consider the following operations, where “bigger” is a variant of coin:

add(0, Y)→ Y
add(s(X), Y)→ s(add(X,Y))
positive(0)→ false
positive(s(X))→ true
bigger → s(0)
bigger → s(s(0))

The evaluation of the term positive(add(bigger, 0)) requires the evaluation of
the subterm bigger. Therefore, one must compute fairly and independently both
positive(add(s(0), 0)) and positive(add(s(s(0), 0)).

However, in a situation like the one just described, the cost of fair indepen-
dent computations might be avoided by means of a programming technique that
facilitates the use of deterministic choices. Our programming technique is based
on the introduction of a new symbol, denoted by the infix operator “ ! ” and
read as alternative, into the signature of the TRS modeling a functional logic
program. We treat the new symbol as a polymorphic operation1, defined by the
rules [8, 14]:

ALT1 : X!Y → X
ALT2 : X!Y → Y

1 The reader can see another different approach in [4], where we also consider the
alternative symbol as an overloaded constructor.

2

The alternative operation allows us to give an equivalent definition of the oper-
ation bigger:

bigger → s(0!s0)

where a common context of the right-hand sides of the rules defining the op-
eration bigger, in the original term rewriting system, has been “factored”. The
advantage of this new definition of bigger with respect to the original one is
that, using a needed strategy [2] or the constructor-based lazy narrowing of [9],
only the factored portion of the two alternative right-hand sides of the rewrite
rules of bigger is needed by a context and no fair independent computations are
created. As it is shown by the following (needed) derivation:

positive(add(bigger, 0))→ positive(add(s(0!s(0)), 0)
→ positive(s(add(0!s(0)), 0))
→ true.

where two non-deterministic fair independent computations have been merged.
Roughly speaking, if we “factor out” the common part of a set of non-deterministic
choices, when it is possible, we can avoid the replication of the choice’s context
obtaining a gain. For this example, the cost criteria developed in [4] reveal that
our programming technique cuts the number of steps in half and reduces the
memory consumption by 25% w.r.t. a computation performed using the original
program. On the other hand, in cases where factoring the right-hand sides of
two rewrite rules does not eliminate the need of fair independent computations,
the run-time cost of factoring is a single additional rewrite step. For realistic
programs, this cost is negligible. Hence, the factorization of right-hand sides is
a source of potential improvement. In the best case, it saves computing time
and/or storage for representing terms. In the worst case, it costs one extra step
and very little additional memory (see [4] for some examples on larger benchmark
programs, coded using the functional logic language Curry [11], that illustrate in
more detail the impact on the efficiency produced by our factoring technique).

We can see all this process as a program transformation that starting from
an original program produce a new and, in many cases, more efficient program.
In this paper, we define our program transformation in a formal setting and
we prove its correctness under precise conditions. That is, we prove that the
original and the transformed program are semantically equivalent. In order to
obtain this result it is convenient to introduce some proof techniques that help
us to reason with non-confluent constructor-based rewrite systems, where the
concept of descendants of a redex [12] is not well established.

The plan of the paper is as follows: Section 2 introduces some preparatory
concepts that are used in the rest of the paper. Section 3 gives a formal definition
of our transformation. Section 4 discusses the conditions under our transforma-
tion is sound and complete and we introduce some concepts to facilitate our
proofs: namely, an embedding relation, that abstracts the intuitive notion of
“containment” between terms with alternative symbols, and the concept of non-
factorized program, that defines a standard form of program. Finally, Section 5
contains our conclusions.

3

A full version with missing proofs can be found as a wed document at the
URL address http://www.inf-cr.uclm.es/www/pjulian.

2 Preliminaries

In this section we briefly summarize some well-known notations and concepts
about term rewriting systems [5] and functional logic programming [10].

2.1 Terms, substitutions and positions.

Throughout this paper, X denotes a countably infinite set of variables and F
denotes a set of function symbols (also called the signature), each of which has
a fixed associated arity. We assume that the signature F is partitioned into two
disjoint sets F = C]D. Symbols in C are called constructors and symbols inD are
called defined functions. T (F ,X) denotes the set of terms or expressions built
from F and X . T (F) denotes the set of ground terms, while T (C,X) denotes the
set of constructor terms. If t 6∈ X , then Root(t) is the function symbol heading
the term t, also called the root symbol of t. A term t is linear if t does not contain
multiple occurrences of the same variable. Var(o) is the set of variables occurring
in the syntactic object o.

A substitution is a mapping from the set of variables X to the set of terms
T (F ,X) such that its domain Dom(σ) = {x ∈ X | σ(x) 6= x} is finite. We
frequently identify a substitution σ with the set {x/σ(x) | x ∈ Dom(σ)}. We
denote the identity substitution by id. We say that σ is a constructor substitution
if σ(x) is constructor term for each x ∈ Dom(σ). We define the composition of
two substitutions σ and θ, denoted σ ◦ θ as usual: σ ◦ θ(x) = σ̂(θ(x)), where σ̂ is
the extension of σ to the domain of the terms T (F ,X). We say that θ is more
general than σ (in symbols θ ≤ σ) iff (∃γ) σ = γ ◦ θ. The restriction σ|̀V of a
substitution σ to a set V of variables is defined by σ|̀V(x) = σ(x) if x ∈ V and
σ|̀V(x) = x if x 6∈ V. We write σ = θ[V] iff σ|̀V = θ|̀V . A renaming is a substitution
ρ such that there exists the inverse substitution ρ−1 and ρ ◦ ρ−1 = ρ−1 ◦ ρ = id.
Given a set S of terms and a substitution σ, σ(S) = {σ(t) | t ∈ S}.

A term t is more general than s (or s is an instance of t), in symbols t ≤ s,
if (∃σ) s = σ(t). Two terms t and t′ are variants if there exists a renaming ρ
such that t′ = ρ(t). A unifier of a pair of terms 〈t1, t2〉 is a substitution σ such
that σ(t1) = σ(t2). A unifier σ is called most general unifier (mgu) if σ ≤ σ′ for
every other unifier σ′.

Positions of a term t (also called occurrences) are represented by sequences
of natural numbers used to address subterms of t. The concatenation of the
sequences p and w is denoted by p.w. We let Λ denote the empty sequence.
Pos(t) and FPos(t) denote, respectively, the set of positions and the set of
nonvariable positions of the term t. If p ∈ Pos(t), t|p denotes the subterm of t at
position p and t[s]p denotes the result of replacing the subterm t|p by the term
s.

4

2.2 Term rewriting, classes of term rewrite systems and programs.

We limit the discussion to unconditional term rewriting systems. A rewrite rule
is a pair l → r with l, r ∈ T (F ,X), l 6∈ X , and Var(r) ⊆ Var(l). l and r
are called the left-hand side (lhs) and right-hand side (rhs) of the rewrite rule,
respectively. A term rewriting system (TRS) R is a finite set of rewrite rules.

Rewrite rules in a TRS define a rewriting relation → between terms which
can be defined as follows: t →p,l→r s if there exists a position p ∈ Pos(t), a
rewrite rule l→ r, and a substitution σ with t|p = σ(l) and s = t[σ(r)]p. We say
that s is reduced to t in a rewrite step, t→p,l→r s and the subterm t|p = σ(l) is
a redex (reducible expression) of t. A sequence of (zero or more) rewriting steps
is denoted by (t→∗ s) t→+ s. A term t is in normal form if t is a term without
redexes. A term s has a normal form if there exists a reduction sequence s→∗ t,
where t is a normal form.

A TRS is terminating or noetherian if there are no infinite reduction se-
quences. Since in this work we do not impose the requirement of terminating
rules, normal forms may not exist.

A TRS is called confluent if, whenever a term s reduces to two terms t1 and
t2, both t1 and t2 reduce to the same term. Confluence is a decidable property for
terminating TRSs. Confluent TRSs have unique normal forms, when they exist.
The confluence property is lost when non convergent critical pairs appear. Given
two rules l1 → r1 and l2 → r2 if there exists a position p ∈ FPos(l1) such that
l1|p and l2 unify with mgu σ, then the pair of terms 〈σ(r1), σ(l1)[σ(r2)]p〉 is a
critical pair . If two rules have a critical pair, we say that they overlap. A special
case of overlapping rules are, those what we call variant overlapping rules, that
is, overlapping rules whose lhss are variants one of each other 2. We call a TRS
with overlapping rules overlapping TRS.

A TRS is said to be constructor-based (CB) if the “arguments” of the lhs of
its rules are constructor terms or variables.

A TRS is said to be left-linear (resp. rigth-linear) if for each rule l → r in
the TRS, the lhs l (resp. rhs r) is a linear term.

Since, in this paper, we are interested in non-determinism we are going to
work with overlapping CB and left linear TRSs that we assimilate to programs.
This is a suitable class of programs for integrating functional and logic languages
and modeling a non-deterministic behavior [2, 8].

2.3 Functional Logic Programming.

Functional logic languages can be considered as an extension of functional lan-
guages with principles derived from logic programming. Most of this languages
use TRSs as programs and (some variant) of narrowing as operational seman-
tics. Narrowing generalizes the rewriting operational mechanism of functional

2 Rules of this kind are not unusual in practical programs. This is the only kind of
overlapping allowed in overlapping inductively sequential rewrite systems, a class
that supports both non-deterministic computations and optimal lazy evaluation [2].

5

languages. The narrowing relation induced by a TRS is defined as follows: a
term t is reduced to the term s in a narrowing step, denoted t ;[p,R,σ] s, if
there exists a position p ∈ FPos(t), a variant program rule R = (l → r) and a
unifier σ of the terms t|p and l, such that s = σ(t[r]p). We say that there exists
a narrowing derivation from a term t to a term s, if there exists a sequence
of narrowing steps t = t0 ;[p1,R1,σ1] t1 ;[p2,R2,σ2] . . . ;[pn,Rn,σn] tn = s and
we write t ;∗σ s, where σ = σn ◦ . . . ◦ σ2 ◦ σ1. We say that the pair 〈s, σ〉 is
the outcome of the derivation. Usually we say that the term s is the result of
the derivation and the substitution σ is the computed answer . Mostly, we are
interested in derivations to constructor terms, that we call values.

Intuitively, narrowing computes a suitable substitution, σ, which when it is
applied to a term t, the term σ(t) can be reduced on a rewriting step σ(t)→p,R s.
Note that, usually, the substitution σ computed by a narrowing step is a most
general unifier, i.e., σ = mgu({l = t|p}). However we have relaxed this restriction
to support narrowing strategies, such as needed narrowing [3] or INS [2], that
may compute substitutions which are not most general unifiers.

Narrowing provides completeness in the sense of logic programming (compu-
tation of answers) and also in the sense of functional programming (computation
of values or normal forms).

3 The Factoring Transformation

The aim of program transformation [6, 18] is to derive a program semantically
equivalent to the original program. More accurately, given an initial program
R, we want to derive a new program R′ which computes the same results and
answers as R for any input term, but with a better behavior w.r.t. some deter-
mined properties (usually, we want the transformed program may be executed
more efficiently than the initial one).

We are interested in the transformation of overlapping, CB and left linear
TRSs modeling functional logic programs with a non-deterministic behavior [2,
9]. Beginning from this point, by abuse of language, and in order to lighten our
discourse, we use the word “program” as a synonym of “overlapping, CB and
left linear TRS”. In a program, variant overlapping rules can be “merged” and
expressed in a more concise way by means of the introduction of the alternative
operation “ ! ”. We consider the alternative operation “ ! ” as defined by the
pair of variant overlapping rules introduced in Section 1. Also, we consider that
this pair of rules is present in all our programs. This assumption is harmless,
since the operation can be added to any program that does not already define
it without changing the meaning of existing operations.

We formalize our transformation, intuitively introduced in Section 1, by
means of the foollowing definitions.

Definition 1. [Term factoring] Let t, u and v be terms. We say that t is a
product of u and v if and only if one of the following conditions hold:

1. t = u ! v or t = v !u.

6

2. t = f(t1, . . . , tn), where f is a symbol of arity n and t1, . . . , tn are terms,
u = f(u1, . . . , un), v = f(v1, . . . , vn), where u1, . . . , un, v1, . . . , vn are terms,
and for all i ∈ {1, . . . , n}\{j}, with j ∈ {1, . . . , n}, ti = ui = vi and tj is a
product of uj and vj.

Conversely we say that u and v are factors of t.

Observe that the last case of Definition 1 may apply when f is “ ! ”.

Example 1. Both s(0) ! s(s(0)) and s(0 ! s(0)) are products of the terms s(0)
and s(s(0)). The term f(X, s(0 ! s(0))) is a product of the terms f(X, s(0))
and f(X, s(s(0))). Note also that, for the terms f(0, 0) and f(s(0), s(0)) it is
impossible to construct a product other that the trivial f(0, 0) ! f(s(0), s(0)).

Intuitively, a product t is built by sharing a common context of u and v over
a single common position of both u and v. In the simplest case the context
is a vacuum context and the single common position is the top position of the
factors.

Definition 2. [Program factoring] Let R be a program defining the alternative
operation “ ! ”, and l1 → r1 and l2 → r2 are variant overlapping rules of R.
Without loss of generality we assume that l1 = l2 (since renaming the variables
of a rule does not change the rewrite relation). A program R′ factors R if and
only if either R′ = R\{l1 → r1, l2 → r2} ∪ {l1 → r}, where r is a product of r1

and r2, or R′ factors some program R′′ and R′′ factors R.

Informally, the factoring transformation can be seen as a process that starting
with an overlapping, left linear and CB TRS (the original program) produce a
new TRS (the transformed program) by application of a sequence of the following
transformation steps:

1. merging step: we arbitrarily select two variant overlapping rules (different
from ALT) l→ u and l→ v that are merged into a new single rule l→ u ! v
and the old rules are erased;

2. factoring step: if possible, we push the root alternative operator down the
term by factoring some common part of the rhs.

This transformation process always terminates, provided that we work with finite
programs and terms. Although we let unspecified both the starting program and
the final program, it should be intuitively clear that the deeper the alternative
operator can be pushed down the right-hand side, the more likely it will be to
replace two fair independent computations by a single computation.

Example 2. Considering once more again the program R = {bigger → s(0),
bigger → s(s(0))} (augmented with the ALT rules), the free application of the
aforementioned transformation steps leads to the following residual programs:

R′1 = {bigger → s(0) ! s(s(0))} and R′2 = {bigger → s(0 ! s(0))}.
BothR′1 andR′2 factorsR (according to Definition 2), but onlyR′2 can effectively
produce a gain by merging two fair independent computations into a single
computation. Finally, it is worthy to say that R′2 factors R′1 and R′2 cannot be
further transformed.

7

Note that, since we introduce the ALT rules in the transformed program as
well as in the original one, both programs derive the same signature and can be
used to reduce the same kind of terms. Therefore, it is not necessary any kind of
renaming transformation as it is the case of other more complex transformation
techniques, e.g., the partial evaluation transformation of [1].

4 Correctness of the Factoring Transformation

From an operational semantics point of view, we say that a transformation is
sound when, given a term, the results and answers computed by the transformed
program are exactly the same as the ones computed by the original program for
that term. The definition of completeness is the reverse of the last concept.

Definition 3. Let = be a mapping from programs to programs. Let R and R′ be
programs (with the same signature) such that R′ = =(R). = is complete if and
only if for every term t and value v, t ;∗σ v in R implies t ;∗σ′ v in R′ where
σ = σ′[Var(t)]. = is sound if and only if for every term t and value v, t ;∗σ′ v
in R′ implies t ;∗σ v in R where σ = σ′[Var(t)].

In this section we are interested in the study of the correctness properties of
the factoring transformation given by Definition 2.

4.1 Embedding relation

For the class of programs we are working on there is not a notion of descen-
dants [12] of a redex. Therefore, it is difficult to reason about the correctness
properties of our transformation. To facilitate our proofs of correctness we in-
troduce an intuitive notion of ordering, for terms with alternative symbols, in
which a term that is “contained” inside another is smaller than the other.

Definition 4 (embedding relation).
The embedding relation � on terms in T (F ,X) is defined as the smallest relation
satisfying: x� x for all x ∈ X , and s� t, if and only if:

1. if Root(s) 6= ! and t = u ! v then s� u or s� v;
2. if s = f(s1, . . . , sn) and t = f(t1, . . . , tn) then si � ti for all i = 1, . . . , n.

The strict embedding relation � is defined, in terms of the embedding relation
�, as follows: s� t, if and only if s� t and s 6= t.

The above definition differs from the homeomorphic embedding relation of [7]
or [16]. Note also that, for the second case, the operation symbol f may be an
alternative symbol.

Example 3. These terms are in the embedding relation: 0 � 0 ! s(X); f(a) �

a ! f(a ! b) and 0 ! f(X) � (0 ! s(0)) ! f(X).

The embedding relation � is a partial order over the set T (F ,X). Clearly, the
relation is reflexive, transitive, and antisymmetric.

8

Definition 5 (minimal element).
Let t be a term, we call minimal element of t, a term u such that u� t and there
no exists a term v � t such that v � u

The notion of minimal element can be extended to substitutions in a natural
way: a substitution σ is minimal w.r.t. the substitution θ iff Dom(σ) = Dom(θ)
and, for all x ∈ Dom(σ), σ(x) is a minimal element of θ(x).

Lemma 1. If s and t are terms such that s � t, then there exists a reduction
sequence from t to s using only ALT rules.

Proof. By structural induction on t. We distinguish the following cases:

1. t ∈ X or t is a nullary symbol
Then, by Definition 4, s = t and the claim follows by vacuity.

2. t = u ! v
Assume Root(s) 6= ! , otherwise we are in the third case of this proof. Now,
by Definition 4, s�u or s� v. Assuming that s�u, by induction hypothesis
u→ALT . . .→ALT s and we can built the reduction sequence:

t = u ! v →ALT1 u→ALT . . .→ALT s

3. t = f(t1, . . . tn)
Then s must be rooted by the symbol f , otherwise s would not be embedded
in t. Hence, s = f(s1, . . . sn) and si�ti for all i ∈ {1, . . . , n}. By the inductive
hypothesis ti →ALT . . .→ALT si for all i ∈ {1, . . . , n} and we can built the
reduction sequence:

t = f(t1, . . . tn)→ALT . . .→ALT f(s1, . . . tn)→ALT . . .
→ALT . . .→ALT f(s1, . . . sn) = s.

Corollary 1. If u is a minimal element of t, then u is a normal form of t w.r.t.
reduction sequences using only ALT rules.

Proof. Immediate by Definition 5 and Lemma 1.

4.2 Completeness

The following lemma establishes the precise relation between a step in the orig-
inal program and a reduction sequence in the transformed one.

Lemma 2. Let R be a program, R′ be a program that factors R. If there exists
a reduction step A = t → s in R then there exists a reduction sequence D′ =
t→+ s in R′.

Proof. Assume that the step A is performed with the rule R = l → r over the
position p and t|p = θ(l), i.e., A = t →p,R t[θ(r)]p. We consider the following
cases:

1. R is a rule that also belongs to R′. Then the claim immediately holds.

9

2. R was merged in a transformed rule R′ = l → r′ of R′, where r is a fac-
tor of r′. Then r � r and by Lemma 1 there exists the reduction sequence
r′ →ALT . . . →ALT r. Therefore we can construct the following reduction
sequence in R′

t→p,R′ t[θ(r′)]p →ALT . . . →ALT t[θ(r)]p

Now it is immediate to establish the equivalence between reduction sequences
leading to a value in both the original and the transformed program.

Proposition 1 (pre-completeness). Let R be a program and R′ be a program
that factors R. If there exists a reduction sequence D = t→∗ s in R, where s is
a value then there exists a reduction sequence D′ = t→∗ s in R′.

Proof. By induction on the number n of steps of the reduction sequence D and
Lemma 2.

Finally, the completeness of the transformation is an easy consequence of the
correctness of narrowing.

Theorem 1. The factoring transformation is complete.

Proof. Let R be a program and R′ be a program that factors R. If there exists
a derivation t ;∗σ s in R

⇒ σ(t)→∗ s in R (by soundness of narrowing)
⇒ σ(t)→∗ s in R′ (by Proposition 1)
⇒ t ;∗σ′ s in R′ with σ′ = σ[Var(t)] (by completeness of narrowing).

Note that it was not necessary to impose additional requirements to the programs
(such as right linearity) or to use a special semantics (see Section 4.4) in order
to obtain the completeness result.

4.3 Soundness

As we are going to see, our transformation does not preserve the soundness
property in all cases. The following example points out this drawback and permit
us to understand the kind of restrictions that are necessary to introduce to
preserve this property.

Example 4. Given the initial program R
R1 : double(X)→ X +X
R2 : f → double(0) R3 : f → double(s(0))

extended with the usual rules for the addition, and the input term f , only the fol-
lowing results are possible: {0, s(s(0))}. On the other hand, the factored version
of R, namely R′, is

R1 : double(X)→ X +X
R23 : f → double(0 ! s(0))

and it can compute the additional result s(0) (twice) for the input term f .

10

This example reveals that, in general, our transformation is unsound, because
there exists derivations in R′ that cannot be reproduced in R. At the first
sight, a possible solution for this drawback might be to restrict the kind of
operations that can be used in the transformation. Note that, the operation
double, defined by rule R1, is not right linear and this is the main source of our
problem: the subterm at position 1 of double(0 ! s(0)) is duplicate, introducing
new alternatives that are not produced when the reduction of f is done using the
original program R. Therefore, the solution might be to impose as a restriction
that only operations defined by right linear rules should be part of a context
containing a product. Unfortunately, a stronger restriction, namely the right
linearity of the program, must be imposed. Suppose that we change the rule R1,
in R, by this right linear rule

R1 : double(X)→ s(s(0))×X,

we also introduce in our program the suitable rules for the operation × and we
transform the resulting program to obtain a new factored version of it. Then
when we proceed with the computation of f , due to the lack of right linearity of
one of the rules defining the operation ×, the same problem is reproduced again
(the original program computes the results {0, s(s(0))} whereas the transformed
program computes the results {0, s(0), s(s(0))}).

For the class of programs we use, the concept of right linearity must be
revised, considering that the variables occurring in different alternatives of a rhs
of a variant overlapping rule are completely independent. Certainly, since this
kind of rules are the result of merging several rules whose lhss are variants [2],
this distintion corresponds with the intended semantics of the original program.

Example 5. Given the program

R1 : f(X)→ g(X) R2 : f(X)→ h(X)

it can be transformed in this other program

R12 : f(X)→ g(X) ! h(X)

The variables of the rules R1 and R2 of the original program are independent
and, indeed, we have to select a variant of these rules when they are applied to
perform a computation step. Therefore, it is meaningless to consider the variable
X of the rule R12 as the same variable for both alternatives.

On the other hand, the situation illustrated by Example 5 does not lead to the
unsoundness problem as we have been discussing above. Although the rule R12 of
Example 5 is not right linear, at most one of both alternatives of the function f is
needed in a computation to a value. Therefore, we assume that the apparition of
this kind of rules in the transformed program doesn’t break the good properties
provided by the right linearity of the original program. Certainly, this kind of
rules preserve an important compositional property that we are going to establish
in Lemma 5.

In order to prove the soundness of our transformation we need the following
auxiliary lemmas. The first lemma points out the existence of a compositional

11

property between the minimal elements of a linear term t, the minimal substi-
tutions w.r.t. a substitution σ and the minimal elements of the term σ(t).

Lemma 3. Let t be a linear term and σ a substitution. Let M be the set of all
minimal elements of t and

⋃n
i=1{σi} be the set of all minimal substitutions w.r.t.

σ. Then,
⋃n
i=1σi(M) is the set of all minimal elements of the term σ(t).

Proof. By structural induction on t. We distinguish the following cases:

1. t ∈ X
In this case t is a minimal element of itself and, by definition of minimal sub-
stitution, each σi(x), i ∈ {1, . . . , n} is a minimal element of σ(x). Therefore,⋃n
i=1{σi(x)} is the set of all minimal elements of the term σ(t).

2. t is a nullary symbol
Then, the claim trivially follows, since t is the single minimal element of
itself, σ(t) = t and σi(t) = t, for all i ∈ {1, . . . , n}.

3. t = f(t1, . . . tm)
Since t is linear, each subterm tj is also linear. Assume Mj is the set of
all minimal elements of tj , j ∈ {1, . . . ,m}. By the inductive hypothesis,⋃n
i=1σi(Mj) is the set of all minimal elements of the term σ(tj). Now consider

the term s = f(s1, . . . sm) where sj ∈ Mj , j ∈ {1, . . . ,m}. By construction
s is one of the minimal elements of t and, by Definition 4 and the inductive
hypothesis,

σi(s) = f(σi(s1), . . . σi(sm)) � f(σ(t1), . . . σ(tm)) = σ(t)

that is, σi(s) is a minimal element of σ(t). Therefore, the claim of this lemma
immediately follows.

The intuitive idea behind Lemma 3 is to avoid problems like the one illustrated
in the following example:

Example 6. Suppose the non-linear term t = X + X (possibly a rhs of a rule)
and a substitution σ = {X/(0 ! s(0))}. Then, t is minimal, {{X/0}, {X/s(0)}}
is the set of minimal substitutions w.r.t. σ, but {{X/0}(t), {X/s(0)}(t)} = {0 +
0, s(0) + s(0)} is not the set of all minimal elements of σ(t).

Lemma 3 can be extended to a product where each factor is linear, although
some of these factors may share some variables in common.

Lemma 4. Let t = u ! v be a product where u and v are linear terms such
that Var(u) ∩ Var(v) 6= ∅. Let U and V be the set of all minimal elements of u
and v respectively. Let σ be a substitution and

⋃n
i=1{σi} be the set of all minimal

substitutions w.r.t. σ. Then, (
⋃n
i=1 σi(U))∪(

⋃ni
i=1 σi(V)) is the set of all minimal

elements of the term σ(t).

Proof. Since u is a linear term, by Lemma 3, Mσ
u =

⋃n
i=1σi(U) is the set of

all minimal elements of the term σ(u) and Mσ
v =

⋃n
i=1σi(V) is the set of all

minimal elements of the term σ(v). Now, consider a term s ∈ U , by Definition 4,

σi(s) � σ(u) � σ(u) ! σ(v) = σ(t),

12

and, by Corollary 1, σi(s) is a minimal element of σ(t). Therefore, each element
of Mσ

u is a minimal element of σ(t). Similarly, each element of Mσ
v is a minimal

element of σ(t). Hence, Mσ
u ∪Mσ

v is the set of all minimal elements of the term
σ(t).

Note that, in Lemma 4, the only requirement for the subterms u and v is linear-
ity and, therefore, they can contain occurrences of the alternative symbol. The
following lemma is a generalization of Lemma 4.

Lemma 5. Let t = t1 ! , . . . , ! tm be a product where each factor tj, j ∈ {1, . . . ,m},
is a linear term such that

⋂m
j=1 Var(tj) 6= ∅. Let Mj be the set of all minimal

elements of tj, j ∈ {1, . . . ,m}. Let σ be a substitution and
⋃n
i=1{σi} be the set of

all minimal substitutions w.r.t. σ. Then,
⋃n
i=1

m

j=1σi(Mj) is the set of all minimal
elements of the term σ(t).

Proof. By induction on the number of alternative symbols in t and Lemma 4.

Note that our transformation produce, mostly, transformed rules whose rhss
fulfills the conditions of Lemma 5. Therefore, the last result can be use to obtain
all minimal elements of a rhs σ′(r′) applying the minimal substitutions σ w.r.t.
σ′ to the minimal elements r of r′. This is one of the keys to prove Lemma 6.
But, we first need the introduction of a new concept.

As we said, Definition 2 lets unspecified the shape of the original program
as well as the way the transformation steps are applied. Managing this great
freedom in the use of our transformation when we try to prove its soundness
can increase unnecessarily the difficulty of the proof without produce, as we are
going to reason, a real gain. Therefore, in order to maintain the proof as simple as
possible, we first assume that the original program is in a “non-factorized” form
and we prove some auxiliary results that are extended to arbitrary programs
later.

Definition 6 (non-factorized program). A non-factorized program is a pro-
gram where the rhs of its rules don’t contain occurrences of the alternative sym-
bol.

That is, a non-factorized program is a program where the variant overlapping
rules are in the simplest possible form and none factoring transformation was
previously applied.

Example 7. The program {bigger → s(0), bigger → s(s(0))} is a non-factorized
version of bigger whereas {bigger → s(0) ! s(s(0))} or {bigger → s(0 ! s(0))} are
not.

It is clear that the non-factorized form of a program is unique, since the factor-
ing transformation does not erase factors and it can be undone following this
sequence of steps: i) given a rule R = l → r, where r contains the alternative
operator, find the set {r1, . . . , rn} of minimal elements of r (w.r.t. embedding
relation); ii) replace the rule R by the set of rules {l→ r1, . . . , l→ rn}.

Now, we are ready to prove the following auxiliary lemmas.

13

Lemma 6. Let R be a non-factorized and right linear program and R′ be a
program that factors R. If there exists a reduction step t′ → u′ in R′ then,
for any minimal element u of u′ there exists a minimal element t of t′ and a
reduction step t→ u in R or t = u.

Proof. By structural induction on t′. We distinguish the following cases:

1. t′ ∈ X or t′ is a nullary constant symbol
The claim follows by vacuity, since t′ is a normal form which is a minimal
element of itself.

2. t′ is a nullary function symbol
In this case, t′ is a minimal element of itself and there must be a rule R′ =
t′ → u′ inR′ (the step is performed over the top position Λ using the identity
substitution id). By Definition 2 and since R is a non-factorized program,
for each minimal element u of u′ there must be a rule R = t′ → u in R.
Thus, the claim follows trivially.

3. t′ = t′1 ! t′2
(a) The step is performed over the top position Λ.

Then the step is performed with an ALT rule. Assume that t′ →ALT1 t
′
1

is the performed reduction step and that u is a minimal element of t′1.
Then, by Corollary 1, we can construct the reduction sequence t′ →ALT1

t′1 →∗ u 6→ALT . Therefore, u is also a minimal element of t′ and the
claim follows trivially since t = u.

(b) The step is performed over a position p 6= Λ.
Assume p = 1.q (i.e., p belongs to t′1) and the step is t′ → u′1 ! t′2. Then
there exists a step t′1 → u′1 in R′ and, by the inductive hypothesis, for
any minimal element u of u′1 there exists a minimal element t of t′1 and
a reduction step t→ u in R. Now, the claim follows by Definition 5 and
the transitive property of the embedding relation.
On the other hand, note that, for each minimal element u of t′2 the claim
follows trivially, since then u is also a minimal element of t′, that is,
t = u.

4. t′ = f(t′1, . . . t
′
n)

(a) The step is performed over the top position Λ.
In this case there must be a rule R′ = l → r′ in R′ such that l =
f(C1[x11, . . . , x1m1], . . . , Cn[xn1, . . . , xnmn]), where each Ci[] is (a pos-
sibly empty) constructor context and t′i = Ci[si1, . . . , snmi]. Therefore
there exists a substitution σ′ such that it is possible the reduction step
t′ = σ′(l) → σ′(r′). By definition of factoring transformation and since
R is a non-factorized program, for each minimal element r of r′ there
exists a rule R = l → r in R. Now consider a minimal substitution σ
w.r.t. σ′, it is possible the following rewriting step t = σ(l) → σ(r) = u
in R. By Lemma 5 u is a minimal element of u′ and, clearly, t is a min-
imal element of t′. Also, by Lemma 5 all minimal elements of u′ can be
obtained applaying the minimal substitutions σ w.r.t. σ′ to the minimal
elements r of r′.

14

(b) The step is performed over a position p 6= Λ.
Assume p = i.q (i.e., p belongs to t′i) and the step is t′ → f(t′1, . . . , u

′
i, . . . , t

′
n).

Then there exists a step t′i → u′i in R′ and, by the inductive hypothesis,
for any minimal element ui of u′i there exists a minimal element ti of t′i
and a reduction step ti → ui in R. Now, the claim follows by Definition 4
and the replacement property of rewriting: for any minimal element tj
of t′j (with j 6= i), u = f(t1, . . . , ui, . . . , tn) is a minimal element of u′,
there exits a step t = f(t1, . . . , ti, . . . , tn) → f(t1, . . . , ui, . . . , tn) = u in
R and t is a minimal element of t′.

Lemma 7. Let R be a non-factorized and right linear program and R′ be a
program that factors R. If there exists a reduction sequence t′ →∗ u′ in R′ then,
for any minimal element u of u′ there exists a minimal element t of t′ and a
reduction sequence t→∗ u in R

Proof. Immediate, by induction on the number of steps n of the reduction se-
quence in R′ and Lemma 6.

The following lemma establishes the relation between the reduction sequences
leading to a value in both the transformed and the original program.

Lemma 8. Let R be a non-factorized and right linear program and R′ be a
program that factors R. If there exists a reduction sequence t→∗ s in R′, where
s is a value then there exists a reduction sequence t→∗ s in R

Proof. By Lemma 7 there exists a reduction sequence u →∗ v in R, where u is
a minimal element of t and v a minimal element of s. Since u� t, by Lemma 1,
there exists a reduction sequence t →ALT . . . →ALT u. On the other hand, if
s is a value and v � s, then v = s. Therefore, we can construct the following
reduction sequence in R: t→ALT . . .→ALT u→∗ v = s.

Now, we lift the last result to arbitrary right linear programs.

Proposition 2 (pre-soundness). Let R be a right linear program and R′ be a
program that factors R. If there exists a reduction sequence t→∗ s in R′, where
s is a value then there exists a reduction sequence t→∗ s in R

Proof. Assume R′′ is the non-factorized program such that R factors R′′. By
definition of the factoring transformation it is clear that R′′ exists and R′ factors
R′′. Also note that, being R right linear, R′′ must be right linear. Now, by
Lemma 8, if there exists a reduction sequence t→∗ s in R′, then there exists a
reduction sequence t→∗ s in R′′ and therefore, by Proposition 1, there exists a
reduction sequence t→∗ s in R.

The soundness of the transformation is an easy consequence of the correctness
of narrowing and Proposition 2

Theorem 2. The factoring transformation is sound for right linear programs.

15

Proof. Let R be a right linear program and R′ be a program that factors R. If
there exists a derivation t ;∗σ s in R′

⇒ σ′(t)→∗ s in R′ (by soundness of narrowing)
⇒ σ′(t)→∗ s in R (by Proposition 2)
⇒ t ;∗σ s in R with σ = σ′[Var(t)] (by completeness of narrowing).

4.4 Discussion

As we have seen, factoring is generally unsound, but soundness can be recovered
in some cases of practical interest. In the following discussion, the notions of de-
scendant of a redex is informal, as this notion has been rigorously defined only
for orthogonal rewrite systems [12]. The unsoundness of factoring originates from
computations in which some redex r generates several descendants, and distinct
descendants are reduced to different terms. Thus, two simple independent solu-
tions to the unsoundness problem are to avoid distinct descendants of a redex
or to ensure that all the descendants of a redex are contracted using the same
rewrite rule.

The first condition holds, as we have just proved, for right-linear rewrite
systems. But the restriction to right linear systems is unacceptable from a pro-
gramming point of view.

The second condition is ensured by the use of a call-time choice semantics
or sharing. These solutions were proposed to manage similar but distinct issues
in the context of overlapping TRSs by Hussmann [14]. Informally, the call-time
choice semantics consists of “committing” to the value of an argument of a
symbol (either operation or constructor) at the time of the symbol’s application.
The value of the argument does not need to be computed at application time:
thus, the laziness of computations is not jeopardized. This semantics is the most
appropriate for some computations, but it fails to capture the intuitive meaning
of others. Nevertheless, there are formalisms, such as [9], and languages, like
Toy [17] (based on the aforementioned formalism) and Curry [11], that adopt
the call-time choice as the only semantics of non-deterministic computations. On
the other hand, sharing is a technique where all occurrences of the same variable
in a rhs of a rule are shared, i.e. all these occurrences are replaced by a pointer
to the same subterm after a rewriting step. Sharing is effectively implemented
using term graphs.

Hence, both approaches, call-time choice semantics or sharing, are useful to
resolve the problems discussed w.r.t. Example 4: they avoid the strong syntactic
restriction of right linearity while keep the factoring transformation sound.

5 Conclusions

Non-deterministic computations are an essential feature of functional logic pro-
gramming languages but its implementation may be very costly, since, usually
it is necessary to compute a set of fair independent computations whose results
are used, and possibly discarded, by a context.

16

In this paper, we have defined a program transformation, called factoring
transformation, that can be fully automated or used as a programming tech-
nique. The factoring transformation is based on the introduction of a new sym-
bol, called alternative, into the signature of a program. The alternative symbol
is a polymorphic defined operation. This symbol allows a program to factor a
common portion of the non-deterministic replacements of a redex. This trans-
formation may improve the efficiency of a computation by reducing the number
of computation steps or the memory used in representing terms. Savings are
obtained when fair independent computations are avoided because only the fac-
tored portion of non-deterministic replacements is needed.

We have studied the formal properties of the factoring transformation, prov-
ing its correctness for right linear programs. Afterwards, we have discussed how
this impractical syntactic restriction can be overcome if sharing or call-time
choice semantics is used as an implementation device of the functional logic lan-
guage. Therefore, our transformation can be applied safely to the Constructor-
based (conditional) ReWriting Logic (CRWL) programs of [9] as well as to
Curry programs [11], since they adopt the call-time choice semantics for non-
deterministic functions.

Also, in order to prove our results we have introduced an embedding relation
that have shown its usefulness to reason with non-confluent constructor-based
TRSs, where the notion of descendants of a redex [12] is not well established.

Finally note that, although the process of factoring a program can remind,
in some aspects, the full laziness transformation of Functional Programming
[13, 15], at the best of our knowledge, it is a novel transformation that can be
applied to a high programming language as well as to a core language, producing
an effective improvement of the efficiency of the programs.

Acknowledgments

I wish to thank Sergio Antoy the discussion of technical aspects of this paper
that greatly improve it. Part of this research was done while the author was
visiting the Department of Computer Science at Portland State University. The
author gratefully acknowledges the hospitality of that department.

References

1. M. Alpuente, M. Falaschi, P. Julián, and G. Vidal. Specialization of Lazy Func-
tional Logic Programs. In Proc. of PEPM’97, volume 32, 12 of Sigplan Notices,
pages 151–162, New York, 1997. ACM Press.

2. S. Antoy. Optimal non-deterministic functional logic computations. In Proc. of
ALP’97, pages 16–30. Springer LNCS 1298, 1997.

3. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of
the ACM, 47(4):776–822, July 2000.

4. S. Antoy, P. Julián Iranzo, and B. Massey. Improving the efficiency of non-
deterministic computations. Electronic Notes in Theoretical Computer Science,
64:22, 2002. URL: http://www.elsevier.nl/locate/entcs/volume64.html.

17

5. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

6. R.M. Burstall and J. Darlington. A Transformation System for Developing Recur-
sive Programs. Journal of the ACM, 24(1):44–67, 1977.

7. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science, volume B: Formal Models and
Semantics, pages 243–320. Elsevier, Amsterdam, 1990.

8. J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and
M. Rodŕıguez-Artalejo. A rewriting logic for declarative programming. In Proc.
ESOP’96, pages 156–172. Springer LNCS 1058, 1996.

9. J.C. González-Moreno, F.J. López-Fraguas, M.T. Hortalá-González, and
M. Rodŕıguez-Artalejo. An approach to declarative programming based on a
rewriting logic. The Journal of Logic Programming, 40:47–87, 1999.

10. M. Hanus. The Integration of Functions into Logic Programming: From Theory
to Practice. Journal of Logic Programming, 19&20:583–628, 1994.

11. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Ver. 0.71). Web
document http://www.informatik.uni-kiel.de/~mh/curry/report.html, 2000.

12. G. Huet and J.-J. Lévy. Computations in orthogonal term rewriting systems. In
J.-L. Lassez and G. Plotkin, editors, Computational logic: essays in honour of Alan
Robinson. MIT Press, Cambridge, MA, 1991.

13. R. Hughes. The Design and Implementation of Programming Languages. PhD
thesis, University of Oxford, 1984., 1984.

14. H. Hussmann. Nondeterministic Algebraic Specifications and nonconfluent term
rewriting. Journal of Logic Programming, 12:237–255, 1992.

15. S. L. Peyton Jones and D. Lester. A modular fully-lazy lambda lifter in HASKELL.
Software, Practice and Experience, 21(5):479–506, 1991.

16. M. Leuschel and B. Martens. Global Control for Partial Deduction through Char-
acteristic Atoms and Global Trees. In Proc. of the 1996 Dagstuhl Seminar on
Partial Evaluation, pages 263–283. Springer LNCS 1110, 1996.

17. F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative
System. In Proceedings of RTA ’99, pages 244–247. Springer LNCS 1631, 1999.

18. A. Pettorossi and M. Proietti. A Comparative Revisitation of Some Program
Transformation Techniques. In O. Danvy, R. Glück, and P. Thiemann, editors, Par-
tial Evaluation, Int’l Seminar, Dagstuhl Castle, Germany, pages 355–385. Springer
LNCS 1110, 1996.

18

