
A WAM IMPLEMENTATION FOR FLEXIBLE QUERY ANSWERING 1

Pascual Julían-Iranzo
Department of Information Technologies and Systems,

University of Castilla-La Mancha.
email: Pascual.Julian@uclm.es

Clemente Rubio-Manzano
Department of Information Technologies and Systems,

University of Castilla-La Mancha.
email: Clemente.Rubio@uclm.es

ABSTRACT
In [7] Maria I. Sessa extended the SLD resolution principle
with the ability of performing approximate reasoning and
flexible query answering. The operational mechanism of
similarity-based SLD resolution can be used as the basis for
a new logic language that allows to manage uncertain and
imprecise information in a declarative framework, hence its
importance. Similarity-based SLD resolution can be seen
as an extension of the classical SLD resolution procedure
where the syntactic unification algorithm has been replaced
by a fuzzy unification algorithm.

In this paper we address the problem of adapting the
implementation of a WAM to incorporate fuzzy unification.
As a result, we obtain a Prolog implementation based on
similarity relations that we call S-Prolog. To the best of
our knowledge this is the first WAM implementation that
supports similarity-based SLD resolution.

KEY WORDS
Fuzzy Logic and Systems, Logic Programming, Fuzzy Pro-
log, Unification by Similarity, Warren Abstract Machine.

1 Introduction

Fuzzy Logic Programmingintegrates fuzzy logic and pure
logic programming [3], in order to provide these languages
with the ability of dealing with uncertainty and approx-
imated reasoning. One of the main advantages of this
combination is the construction of programming languages
that allow us to deal with imprecise information by using
declarative techniques. It is important to say that there is
no common method for introducing fuzzy concepts into
logic programming. In this paper we follow the concep-
tual approach introduced in [7] where the notion of “ap-
proximation” is managed at a syntactic level by means of
similarity relations. A similarity relation is an extension
of the crisp notion of equivalence relation and it can be
useful in any context where the concept of equality must
be weakened. In [7] a new modified version of the SLD
resolution procedure, namedsimilarity-basedSLD, is de-
fined. Roughly speaking the similarity-based SLD resolu-
tion principle works as it is shown by the following exam-
ple (adapted from [7]).

1This work has been partially supported by the EU, under FEDER,
and the Spanish Science and Education Ministry (MEC) under grant TIN
2004-07943-C04-03.

Example 1 Assume a database storing information on
books, including readers preferences and some subjective
information concerning the similarity between some syn-
tactic entities. Then it is possible to perform an inference
reasoning step where the antecedent of a conditional for-
mula is allowed to match with some premise only approxi-
mately.

if x is amystery book thenx is agood one;
dracula is ahorror book;
horror is similar tomystery with degree0.9
dracula is agood book with degree0.9

Since horror is similar to mystery with a cer-
tainty/truth degree of0.9, also the conclusion will be af-
fected by the similarity degree assigned to the relation be-
tweenhorror andmystery .

In this paper we are interested in the implementa-
tion of a fuzzy logic language that follows this inference
scheme. More precisely, our goal is to incorporate the
Sessa’s similarity-based SLD resolution principle into the
core of a Warren Abstract Machine (WAM) [8]. As a re-
sult, we obtain a Prolog implementation based on similar-
ity relations that we call S-Prolog. The WAM is a virtual
computer that aids in the compilation and implementation
of the Prolog programming language and offers techniques
for compiling symbolic languages that can be generalized
beyond Prolog. A tutorial reconstruction for the WAM can
be found in [1].

A prototype implementation of the Similarity
WAM Machine can be found in the URL address
http://www.inf-cr.uclm.es/www/pjulian/swam.html .

In the following, we assume familiarity with the the-
ory and practice of logic programming [2].

2 Similarity Relations and Unification by
Similarity

A similarity relation on a setU is a fuzzy binary relation
onU × U , that is, a mappingR : U × U → [0, 1], holding
the following properties: i)(Reflexive) R(x, x) = 1 for
any x ∈ U ; ii) (Symmetric) R(x, y) = R(y, x) for any
x, y ∈ U ; iii) (Transitive) R(x, z) ≥ R(x, y)4R(y, z)
for anyx, y, z ∈ U ; where the operator ‘4’ is an arbitrary
t-norm.

In [6] when the operator4 = ∧ (that is, it is the mini-
mum of two elements), similarity relations are called fuzzy
equivalence relations. Following [7], in the sequel, we re-
strict ourself to fuzzy equivalence relations on a syntactic
domain.

Usually, in classical Logic Programming, different
syntactic symbols represent distinct information. This re-
striction can be relaxed by introducing a similarity re-
lation R on the alphabet of a first order language, al-
lowing R to provide a possible non-zero value for func-
tion/predicate symbols with the same arity, whereas it is
the identity relation for variables. The similarity relation
R on the alphabet of a first order language can be ex-
tended to terms and atomic formulas by structural induc-
tion in the usual way: LetP andQ be metavariables rep-
resenting twon-ary function symbols or twon-ary pred-
icate symbols and lett1, . . . , tn, s1, . . . , sn be terms.
Then, R(P (t1, . . . , tn), Q(s1, . . . , sn)) = R(P,Q) ∧
(
∧n

i=1R(ti, si)).
In presence of similarity relations on syntactic do-

mains, it is possible to define an extended notion of a more
general unifier of two expressions1. The weak unification
algorithm introduced by [7] is an extension of Martelli and
Montanari’s unification algorithm for syntactic unification
[4] and it is based in the following observation: The task
of obtaining aweak more general unifier(w.m.g.u.) of two
expressionsE1 = f(t1, . . . , tn) andE2 = g(s1, . . . , sn)
with R(f, g) = α > 0, whereR is a similarity relation,
is not a failure but it is equivalent to solve the (initial) set
of equationsG = {t1 ∼ s1, . . . , tn ∼ sn} coupled with
the similarity degreeα. Here, the symbol “∼” represents
the possibility that the arguments inE1 andE2 be equals by
similarity.

The weak unification algorithm can be formalized as
a transition system based on a similarity-based unification
relation “⇒”. The unification of the expressionsE1 andE2
is obtained by a state transformation sequence starting from
an initial state〈G, id, α〉, whereid is the identity substitu-
tion:

〈G, id, α〉 ⇒ 〈G1, θ1, α1〉 ⇒ . . .⇒ 〈Gn, θn, αn〉.

When the final state〈Gn, θn, αn〉, with Gn = ∅, is reached
(i.e., the equations in the initial state have been solved),
the expressionsE1 andE2 are unifiable by similarity with
w.m.g.u. θn and unification degreeαn. Therefore, the fi-
nal state〈∅, θn, αn〉 signals out the unification success. On
the other hand, when expressionsE1 andE2 are not unifi-
able, the state transformation sequence ends with failure
(i.e.,Gn = Fail).

The similarity-based unification relation “⇒” is de-
fined as the smallest relation derived by a set of transition
rules that behave as in the classical unification algorithm,
except for the rules:

Term decomposition by similarity :

〈{f(t1, . . . , tn) ∼ g(s1, . . . , sn)} ∪ E, θ, α〉 , R(f, g) = β > 0

〈{t1 ∼ s1, . . . , tn ∼ sn} ∪ E, θ, (α ∧ β)〉
1We mean by “expression” a first order term or an atomic formula.

Failure :

〈{f(t1, . . . , tn) ∼ g(s1, . . . , sn)} ∪ E, θ, α〉 , R(f, g) = 0

〈Fail, θ, α〉

In the rules above,E denotes a set of (remaining) equa-
tional goals.

In general, the weak unification algorithm allows us to
check if a set of expressionsS = {E1 ∼ E ′1, . . . , En ∼ E ′n}
is weak unifiable. The w.m.g.u. of the setS is denoted by
wmgu(S).

3 Similarity-Based SLD Resolution

LetΠ be a set of Horn clauses andR a similarity relation on
the first order alphabet induced byΠ. We defineWeak SLD
(WSLD) resolutionas a transition system〈E,=⇒W SLD〉
whereE is a set of triples〈G, θ, α〉 (goal, substitution, ap-
proximation degree), that we call thestateof a computa-
tion, and whose transition relation=⇒W SLD⊆ (E × E) is
the smallest relation which satisfies:

C = (A ←Q) << Π,
σ = wmgu(A,A′) 6= fail, λ = R(σ(A),σ(A′))

〈(←A′,Q′), θ, α〉 =⇒W SLD 〈← σ(Q,Q′), σ ◦ θ, λ ∧ α〉

whereQ, Q′ are conjunctions of atoms and the notation
“C << Π” is representing thatC is a standardized apart
clause inΠ.

A WSLD derivation forΠ ∪ {G0} is a sequence of
steps

〈G0, id, 1〉 =⇒W SLD . . . =⇒W SLD 〈Gn, θn, λn〉.

And a WSLD refutation is a WSLD derivation
〈G0, id, 1〉 =⇒W SLD

∗ 〈2, σ, λ〉, whereσ is a computed an-
swer andλ is itsapproximation degree. Certainly, a WSLD
refutation computes a family of answers, in the sense that,
if σ = {x1/t1, . . . , xn/tn} then whatever substitution
θ′ = {x1/s1, . . . , xn/sn}, holding thatsi ≡R,λ ti (i.e.,
R(si, ti) ≥ λ), for any 1 ≤ i ≤ n, is also a computed
answer with approximation degreeλ.

4 S-Prolog: Syntax and Semantics

The language we call S-Prolog is an extension of the pure
Prolog language with a similarity relation defined on a syn-
tactic domain. Therefore, the syntax of the extended lan-
guage is easy. It is just the Prolog syntax but enriched with
a built-in symbol “∼” used for describing similarity rela-
tions by means ofsimilarity equationsof the form:

<symbol> ˜ <symbol> = <similarity degree>

meaning that two constants, n-ary function symbols or n-
ary predicate symbols are similar with a certain degree.
More precisely, we use the built-in symbol “∼” as a com-
pressed notation for the symmetric closure of an arbitrary
fuzzy binary relationR (that is, a similarity equationa ∼
b = α can be understood in both directions:a is similar tob

andb is similar toa with degreeα). The user can supply an
initial subset of similarity equations and then, the system
generates a reflexive and transitive closure to obtain a simi-
larity relation. Hence, a S-Prolog program is a sequence of
Prolog facts and rules followed by a sequence of similarity
equations.

Example 2 This S-Prolog program fragment specify fea-
tures and preferences on books stored in a data base. The
preferences are specified by means of similarity equations2:

% FACTS
adventures(treasure_island).
adventures(the_call_of_the_wild).
mystery(murders_in_the_rue_morgue).
horror(dracula).
science_fiction(the_city_and_the_stars).
science_fiction(the_martian_chronicles).

% RULES
good(X) :- interesting(X).

% SIMILARITY EQUATIONS
% Direct connections
adventures ˜ mystery = 0.5
adventures ˜ science_fiction = 0.8
adventures ˜ interesting = 0.9
mystery ˜ horror = 0.9
mystery ˜ science_fiction = 0.5
science_fiction ˜ horror = 0.5

% Transitive connections
adventures ˜ horror = 0.5
mystery ˜ interesting = 0.5
interesting ˜ horror = 0.5
science_fiction ˜ interesting = 0.8

The operational semantics of S-Prolog conforms with
the similarity-based SLD principle [7] as it is defined in
Section 3. Therefore, S-Prolog computes answers as well
as approximation degrees.

5 The Similarity WAM Machine

In this section we present the main features of the Similar-
ity WAM machine (SWAM), a virtual machine for execut-
ing S-Prolog programs. As we shall show, the SWAM uses
an operational mechanism that conforms the weak SLD
principle.

The structure of the S-Prolog compiler has three main
parts, being the SWAM machine the basis for the compiler
implementation: i) given a source program, theAnalyzer
performs a syntactical analysis and, at the same time, it
translates the source program into an internal representa-
tion; ii) the Adaptertakes that internal representation and
it obtains some auxiliary representations that facilitate the

2In order to facilitate later discussions, we explicitly give the similarity
equations that complete the transitive closure of the initial fuzzy binary
relation.

code generation task; iii) finally, theCode Generatorpro-
duces the machine code associated to the source program.
All these phases, except the one related with the Adapter,
have been implemented following standard techniques de-
scribed in [1].

Once the machine code is generated, it is stored in
the Code Area, an addressable array of memory words.
One or more memory words may contain a possibly la-
beled instruction consisting of an operation code followed
by operands. Labels are symbolic entry points into the
Code Area which are used bycontrol instructionsto alter
the standard sequential execution order of machine instruc-
tions. Additionally, multi-labels are also used with other
purposes, such as to guide some stages of the weak unifica-
tion process (see below in the next section and Section 5.3).
On the other hand, the similarity relation is stored into the
Similarity Matrixmemory area and its information is used:
i) at compilation time, by the Adapter (see Section 5.2). ii)
at execution time, when it is necessary during the unifica-
tion process.

In the sequel, we shall comment more deeply the main
points where the SWAM design diverges from the standard
WAM, but before doing that it is necessary to introduce
a note about how syntactical unification of expressions is
performed.

5.1 Standard versus weak unification

It is noteworthy that the syntactical unification algorithm
is implemented into the WAM as a distributed procedure
which includes two phases:

Ph 1 Unification of the predicate symbol rooting a
(sub)goal and the heads of the clauses defin-
ing that predicate. This unification stage is imme-
diate and produces a choice point. From the code
generation point of view, it mainly produces the fol-
lowing set of machine instructions:try me else ,
retry me else andtrust me(when the program
clauses are compiled).

Ph 2 Unification of the corresponding arguments of
the (sub)goal and the clause heads being uni-
fied. From the code generation point of view,
the visible effect is a set of machine instruc-
tions: get structure , unify variable and
unify value (when the program clauses are com-
piled). However, in this phase, the argument unifica-
tion is not tested immediately, but at execution time by
specific code portions inside theget structure
instruction and the procedureunify which is called
by theunify value instruction.

Therefore, if we want to introduce weak unification
into a WAM context, it is necessary to modify both phases
of the distributed unification procedure above described.

Ph 1 This phase controls the “flexible” matching of predi-
cate symbols during the unification process when pro-

grams are augmented with similarity relations. This
is a critical phase, since it is not obvious at a first
glance how to proceed. We see that it requires the
introduction of a program transformation step, which
transforms the original program into a set of “clauses”
whose bodies contain information about the similar-
ity degree between predicate symbols. The Adapter
carry out the transformation and manages the trans-
formed program in order to facilitate the code gener-
ation. Section 5.2 describes the main features of the
transformation.

Ph 2 The adaptation of this phase is easy. It only re-
quires the modification of some portions of the ma-
chine instructionget structure and the proce-
dureunify , in order to perform a “flexible” matching
of function and constant symbols which is guided by
the similarity equations.

Finally, note that, when unifying expressions in presence
of similarity relations it is necessary to store, as a part of
the computation state, the current computed approximation
degree. To cover this task, we use a specific global register
in the SWAM which works as an accumulator register. We
call this, theADregister.

5.2 The Adapter and the first phase of the
weak unification procedure

In a logic program, a predicatep is defined by the set of
clauses whose head is rooted byp. However, in a logic
program extended with a similarity relation, a clause defin-
ing the predicatep can also be considered as defining each
predicateq which is similar top. On the other hand, as it
was commented, the structure of the WAM is designed to
test a “crisp” matching of predicate symbols. Therefore, if
we want a “flexible” matching of predicate symbols with-
out forcing the structure of the WAM, given a clause defin-
ing a predicatep, we need to introduce a new clause for
each predicateq which is similar top. We do it in order to
simulate a “flexible” matching with a “crisp” technique.

The following definition formalizes the program
transformation performed by the Adapter. We need to in-
troduce an extended language obtained by adding to the
object language alphabet the elements of the lattice[0, 1]
(of similarity degrees). Clauses in this extended language
contain bodies with literals which are similarity degrees.
We call these clauses ‘e-clauses’. Also e-clauses with an
empty head are called ‘e-goals’.

Definition 1 Let Π be a logic program andR a simi-
larity relation on the syntactic domain generated byΠ.
Let p(t1, . . . , tn) ← Q be a clause inΠ defining the
n-ary predicatep. Then, for eachR(p, q) = α >
0 add to the transformed programΠ′ the new e-clause
q(t1, . . . , tn) ← α,Q. Hence, the transformed program
Π′ = {q(t1, . . . , tn) ← α,Q | (p(t1, . . . , tn) ← Q) ∈
Π andR(p, q) = α > 0}.

Observe that, sinceR(p, p) = 1 for any symbolp, if
p(t1, . . . , tn) ← Q is in the original program, the e-clause
p(t1, . . . , tn) ← 1,Q will be in the transformed program.
Thus we give an uniform treatment for all clauses in the
transformed program.

We give an example reproducing the effect of the
transformation on a program fragment.

Example 3 A fragment of the transformed program show-
ing the clauses defining the predicateadventures :

adventures(treasure_island):-1.0.
adventures(the_call_of_the_wild):-1.0.
adventures(murders_in_the_rue_morge):-0.5.
adventures(dracula):-0.5.
adventures(the_city_and_the_stars):-0.8.
adventures(the_martian_chronicles):-0.8.

5.3 Compilation of S-Prolog Programs

The compilation of the transformed program to machine
code is done using standard techniques. In essence, clauses
of a transformed program are translated into the same ma-
chine instruction set a standard implementation would have
produced. The only difference is that similarity degrees, in
the body of transformed clauses, are “stored” in a multi-
label field of thetry me else , retry me else and
trust memachine instructions. The values in the multi-
label field will be used during the computation of the unifi-
cation degree in a WSDL resolution step.

Example 4 The following shows the compiled code for the
program fragment of Example 3:

0 : adventures/1 [1.0] :try_me_else 3
1 : get_structure treasure_island 0,1
2 : proceed
3 : [1.0] :retry_me_else 6
4 : get_structure the_call_of_the_wild 0,1
5 : proceed
6 : [0.5] :retry_me_else 9
7 : get_structure murders_in_the_rue_morge 0,1
8 : proceed
9 : [0.5] :retry_me_else 12
10 : get_structure dracula/0,1
11 : proceed
12 : [0.8] :retry_me_else 15
13 : get_structure the_city_and_the_stars 0,1
14 : proceed
15 : [0.8] :trust_me
16 : get_structure the_martian_chronicles 0,1
17 : proceed

In general, given an adapted program, defining a pred-
icatep:

p :- 1.0, Q_1
p :- alpha_j, Q_j
.
.
p :- alpha_m, Q_m
p :- alpha_n, Q_n

where thealpha i are similarity degrees and the
Q i are conjunction of atoms, it is translated into the fol-
lowing set of machine instructions:

Li : adventures/1 [1.0] :try_me_else Lj
% code for the arguments in the
% head atom p
% code for the body atoms in Q_1
proceed

Lj : [alpha_j] :retry_me_else Lk
% code for the arguments in the
% head atom p
% code for the body atoms in Q_j
proceed

Lk : . . .
.
.
Lm : [alpha_m] :retry_me_else Ln

% code for the arguments in the
% head atom p
% code for the body atoms in Q_m
proceed

Ln : [alpha_n] :trust_me
% code for the arguments in the
% head atom p
% code for the body atoms in Q_n
proceed

5.4 Specific machine instructions for ap-
proximation degree control

In this section we describe how the SWAM controls the
computation of the approximation degree when a choice
point is created. In order to accomplish this task properly,
we need:

1. to introduce a global register, called theAD register,
to store the approximation degree computed at each
WSLD resolution step;

2. to modify the standard choice point frame3 structure
by adding a new field to save the value stored in the
ADregister, prior to the creation of a choice point; this
is because, when the computation backtracks and the
next clause in an alternative is taken, we need to restart
the computation (of the approximation degree) at the
point it was left before the former clause was try.

As the choice point frame structure has been mod-
ified, the machine instructions that work in combination
with it need also to be modified. In the following we briefly
comment the functionality of these instructions, specially,
regarding with the control of the approximation degree.

Thetry me else machine instruction builds a new
choice point frame on top of the stack, setting its fields ac-
cording to the current context. Certainly, it stores the cur-
rent value of theADregister.

When the computation backtracks, the
retry me else instruction resets all the necessary
informations from the current choice point frame. Specif-
ically, the value which theAD register had, at the time

3A choice point frame is a data structure used to save the computation
state, that is, all the information required to continue the computation upon
backtracking.

the choice point frame was created, is restored. Then it is
set as the minimum of its value and the similarity degree
“stored” at the multi-label field of theretry me else
instruction.

The trust me instruction behaves in a similar way
as theretry me else instruction does. The only differ-
ence is that the former discards the current choice point
frame after the context (including theAD register) have
been restored.

Finally, note that, since we have altered the size of
a choice point frame, by adding a new field to save the
AD register, the machine instructionallocate must be
slightly modified. This is becauseallocate builds a new
environment frame on the top of the stack and the top of the
stack is computed differently depending on whether an en-
vironment or choice point frame is the last pushed structure
on the stack. On the other hand the machine instruction
deallocate remains unchanged.

5.5 Specific machine instructions for argu-
ment weak unification

Before ending this section, we comment the main features
of machine instructions involved in the process of argument
unification.

The get structure(f,n,A) machine instruc-
tion tests the similarity of constant and function symbols
of terms in predicate arguments. More precisely, it acts as
follows (we explain the cases directly related with the weak
unification process): if the heap cell referenced by the ar-
gument registerA contains a structure (a STR tag) pointing
to a function symbolf with arity n we are in the classical
case. This signals out a successful unification step where
the unification degree remains unchanged. However, when
the heap cell referenced by the argument registerA is point-
ing to a function symbol which is not syntactically equal to
f but is similar tof with degreealpha , the unification de-
gree is recomputed (as the minimum of its previous value
andalpha) and stored into theADregister. Otherwise, the
unification process fails and the procedurebacktrack is
called.

Finally, the machine instructionunify value calls
the procedureunify , which carries out the other part of
the argument unification process. The procedureunify
implements the weak unification algorithm defined in Sec-
tion 2.

6 SWAM Operational Semantics

This section formally describes the operational semantics
of the SWAM, which is an adaptation of the WSLD reso-
lution rule aiming to preserve the architecture of a standard
WAM.

In the remainder of this section we shall work inside
the framework of the extended language built by e-clauses
and e-goals.Π′ denotes a transformed program obtained

by applying Definition 1 on a logic programΠ equipped
with a similarity relationR.

Definition 2 We define the SWAM operational semantics
as a transition system〈E,=⇒SW AM〉 where E is a set
of triples〈G, θ, α〉 (e-goal, substitution, approximation de-
gree), and whose transition relation=⇒SW AM⊆ (E × E)
is the smallest relation which satisfies:

Rule 1:
β ∈ (0, 1]

〈(←β,Q′), θ, α〉 =⇒SW AM 〈← σ(Q′), θ, β ∧ α〉

Rule 2:
(p(t1, . . . , tn)←Q) << Π′,

σ = wmgu(p(t1, . . . , tn),p(s1, . . . , sn)) 6= fail,
λi = νR(σ(ti),σ(si))

〈(←p(s1, . . . , sn),Q′), θ, α〉
=⇒SW AM 〈← σ(Q,Q′), σ ◦ θ, (

∧n
i=1 λi) ∧ α〉

whereQ,Q′ are conjunctions of atoms.

The following proposition establishes the semantic
equivalence between the WSLD rule and the operational
mechanism of Definition 2 and therefore the correctness of
our implementation.

Proposition 1 Given a logic programΠ with a similar-
ity relation R, let Π′ be the transformed program ob-
tained by applying Definition 1. There exists a derivation
D = (〈(←Q′

0), θ0, α0〉 =⇒W SLD
∗ 〈← Q′

n, θn, αn〉) in
Π, if and only if there exists a derivationD′ = (〈(←
Q′

0), θ0, α0〉 =⇒SW AM
∗ 〈← Q′

n, θn, αn〉) in Π′, which
computes the same state.

Proof. By induction on the length of the derivations.2

Although derivations inΠ′ have more steps than
equivalent derivations inΠ, observe that the unification ef-
fort is reduced when executing a goal in the transformed
programΠ′. Hence, the SWAM operational mechanism is
more efficient than a naive, direct implementation of the
WSLD resolution rule.

7 Conclusions and Future Work

In this paper we have investigated how to incorporate the
weak unification algorithm of [7] into the WAM, leading
to a system well suited to be used for approximate reason-
ing and flexible query answering. We have presented the
technical details that allow us to solve this problem:

1. We have designed a new pre-compilation phase, called
the Adapter, which introduces some adaptations into
the source code to facilitate the translation task. Also,
the Adapter translates the original program into a
transformed program, with explicit information about
the similarity degree of predicates, that helps us to
manage similarity relations properly.

2. We have appropriately modified some machine in-
structions to carry out the weak unification pro-
cess. Mainly: try me else , retry me else ,
trust me, get structure and the procedure
unify . A global register, theAD register, stores the
result of computing the current approximation degree
step by step.

As a result, we obtain a Prolog implementation based
on similarity relations that we call S-Prolog. To the best of
our knowledge this is the first WAM implementation that
supports similarity-based SLD resolution.

At the present time, the SWAM is a prototype imple-
mentation useful to essay new compilation techniques. We
have introduced algorithms to manage similarity relations,
although this was not an objective of this work and we did
not present them in this paper. However, the treatment of
similarity relations is rather naive and it is necessary to im-
plement more efficient algorithms to solve the transitive
closure problem, what is left as a future work. Also we
want to study how to combine, in our setting, the WSLD
resolution rule with a concrete instance of the multi-adjoint
logic programming framework described in [5].

References

[1] H. Aı̈t-Kaci. Warren’s Abstract Machine: A Tuto-
rial Reconstruction. The MIT Press, Cambridge, MA,
1991.

[2] K. R. Apt. From Logic Programming to Prolog. Pren-
tice Hall, Englewood Cliffs, NJ, 1997.

[3] J.W. Lloyd. Foundations of Logic Programming.
Springer-Verlag, Berlin, 1987. Second edition.

[4] A. Martelli and U. Montanari. An Efficient Unifica-
tion Algorithm. ACM Transactions on Programming
Languages and Systems, 4:258–282, 1982.

[5] J. Medina, M. Ojeda-Aciego, and P. Vojtá̌s. Similarity-
based unification: a multi-adjoint approach.Fuzzy Sets
and Systems, 146(1):43–62, 2004.

[6] H.T. Nguyen and E.A. Walker.A First Course in Fuzzy
Logic. Chapman & Hall/CRC, Boca Ratón, Florida,
2000.

[7] Maria I. Sessa. Approximate reasoning by similarity-
based sld resolution.Theoretical Computer Science,
275(1-2):389–426, 2002.

[8] David H. D. Warren. An Abstract Prolog Instruction
Set. Technical note 309, SRI International, Menlo
Park, CA., October, 1983.

