
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Bousi∼Prolog: a Prolog extension language

for flexible query answering ⋆

Pascual Julián-Iranzo
1

Clemente Rubio-Manzano
2

Juan Gallardo-Casero
3

Dep. of Information Technologies and Systems,
University of Castilla-La Mancha,

Spain.

Abstract

In this paper we present the main features an implementation details of a programming language that
we call Bousi∼Prolog. It can be seen as an extension of Prolog able to deal with similarity-based fuzzy
unification (“Bousi” is the Spanish acronym for “fuzzy unification by similarity”). The main goal is the
implementation of a declarative programming language well suited for flexible query answering.
The operational semantics of Bousi∼Prolog is an adaptation of the SLD resolution principle where classical
unification has been replaced by an algorithm based on similarity relations defined on a syntactic domain.
A similarity relation is an extension of the crisp notion of equivalence relation and it can be useful in any
context where the concept of equality must be weakened. Hence, the syntax of Bousi∼Prolog is an extension
of the Prolog’s language: in general, a Bousi∼Prolog program is a set of Prolog clauses plus a set of similarity
equations.

Keywords: Fuzzy Logic Programming, Fuzzy Prolog, Unification by Similarity, Weak SLD Resolution.

1 Introduction

Fuzzy Logic Programming integrates fuzzy logic and pure logic programming in

order to provide these languages with the ability of dealing with uncertainty and

approximate reasoning. There is no common method for this integration (See for

instance: [7,8,12,2,15] and [20]; as well as [3,4,5,6] and [18]). A possible way to

go, if we want to grapple with the issue of flexible query answering 4 , is to follow

the conceptual approach introduced in [18] where the notion of “approximation” is

managed at a syntactic level by means of similarity relations. A similarity relation

is an extension of the crisp notion of equivalence relation and it can be useful in any

⋆ This work has been partially supported by FEDER and the Spanish Science and Education Ministry
(MEC) under grants TIN 2004-07943-C04-03 and TIN 2007-65749.
1 Email: Pascual.Julian@uclm.es
2 Email: Clemente.Rubio@alu.uclm.es
3 Email: Juan.Gallardo@alu.uclm.es
4 If you are pursuing a different objective, other approaches are preferable.

c©2008 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:Pascual.Julian@uclm.es
mailto:Clemente.Rubio@alu.uclm.es
mailto:Juan.Gallardo@alu.uclm.es

Julian-Iranzo et al.

context where the concept of equality must be weakened. In [18] a new modified

version of the Linear resolution strategy with Selection function for Definite clauses

(SLD resolution) is defined, which is named similarity-based SLD resolution (or

weak SLD resolution —WSLD—). This operational mechanism can be seen as a

variant of the SLD resolution procedure where the classical unification algorithm

has been replaced by the weak unification algorithm formally described in [18] (and

reformulate in terms of a transition system in [10]). Informally, Maria Sessa’s weak

unification algorithm states that two terms f(t1, . . . , tn) and g(s1, . . . , sn) weak unify

if the root symbols f and g are considered similar and each of their arguments ti
and si weak unify. Therefore, the weak unification algorithm does not produce a

failure when there is a clash of two syntactical distinct symbols whenever they are

similar.

In this paper we present the main features an implementation details of a pro-

gramming language that we call Bousi∼Prolog (BPL for short), with an operational

semantics based on the weak SLD resolution principle of [18]. Hence, Bousi∼Prolog

computes answers as well as approximation degrees. Essentially, the Bousi∼Prolog

syntax is just the Prolog syntax but enriched with a built-in symbol “∼∼” used for

describing similarity relations by means of similarity equations of the form:

<alphabet symbol> ~~ <alphabet symbol> = <similarity degree>.

Although, formally, a similarity equation represents an arbitrary fuzzy binary re-

lation, its intuitive reading is that two constants, n-ary function symbols or n-ary

predicate symbols are similar with a certain degree. Informally, we use the built-in

symbol “∼∼” as a compressed notation for the symmetric closure of an arbitrary

fuzzy binary relation (that is, a similarity equation a ∼∼ b = α can be understood

in both directions: a is similar to b and b is similar to a with degree α). Therefore, a

Bousi∼Prolog program is a sequence of Prolog facts and rules followed by a sequence

of similarity equations.

The structure of the paper is as follows. Some motivating examples are given in

Section 2. The examples serve to introduce syntactical aspects of the Bousi∼Prolog

language as well as to sustain the usefulness of the proposal. Section 3 presents the

Bousi∼Prolog system structure, briefly describing its main components. Section 4,

after recalling the definition of a similarity relation, gives some insight about its

internal representation and how it is computed. The rest of this section is devoted

to the implementation of the weak unification algorithm, which is the basis of the

similarity-based SLD resolution principle. Section 5 presents the formal definition

of Sessa’s Weak SLD resolution principle and details of its concrete implementation

in our system. In Section 6, information about distinct classes of cuts and negations

are given. Section 7 discusses the relation of our work to other research lines on

fuzzy logic programming. Finally, in Section 8 we give our conclusions and some

lines of future research.

In the following, we assume some familiarity on the basic concepts around the

field of logic programming [1].

2

Julian-Iranzo et al.

2 Motivating examples

Our first example serves to illustrate BPL syntax as well as some features of its

operational behavior in a very simple context.

Example 2.1 Consider the program Autumn that consists of the following clauses

and similarity equations:

% FACTS % RULES % SIMILARITY EQUATIONS

autumn. warm :- summer. spring ~~ autumn = 0.7

warm :- sunny. spring ~~ summer = 0.5

rainy :- spring. autumn ~~ winter = 0.5

cold :- winter.

happy :- warm.

In an standard Prolog system a query as “?- happy” fails, since we are specifying

that it is warm if it is summer time (first rule) and, actually, it is autumn. Similarly,

the query “?- rainy” fails also.

However, the BPL system is able to compute the following successful deriva-

tions 5 :

• 〈← happy, id, 1〉 =⇒WSLD 〈← warm, id, 1〉 =⇒WSLD 〈← summer, id, 1〉

=⇒WSLD 〈2, id, 0.5〉.

Here, the last step is possible because summer weak unifies with the fact autumn,

since there is a transitive connection between summer and autumn with approxi-

mation degree 0.5 (the minimum of 0.7 and 0.5). Therefore, the system answers

“Yes, with approximation degree 0.5”.

• 〈← rainy, id, 1〉 =⇒WSLD 〈← spring, id, 1〉 =⇒WSLD 〈2, id, 0.7〉.

In this case, the system answers “Yes, with approximation degree 0.7” be-

cause spring and autumn weak unify with approximation degree 0.7 and the last

step is possible.

In general, the Bousi∼Prolog computes answers as well as approximation degrees

which are the minimum of the approximation degrees obtained in each step.

The second example shows how Bousi∼Prolog is well suited for flexible query

answering.

Example 2.2 This BPL program fragment specify features and preferences on

books stored in a data base. The preferences are specified by means of similar-

ity equations:

% FACTS

adventures(treasure_island).

adventures(the_call_of_the_wild).

mystery(murders_in_the_rue_morgue).

horror(dracula).

science_fiction(the_city_and_the_stars).

5 The symbol “id” denotes the identity substitution and “2” the empty clause.

3

Julian-Iranzo et al.

science_fiction(the_martian_chronicles).

% RULES

good(X) :- interesting(X).

% SIMILARITY EQUATIONS

adventures ~~ mystery = 0.5

adventures ~~ science_fiction = 0.8

adventures ~~ interesting = 0.9

mystery ~~ horror = 0.9

mystery ~~ science_fiction = 0.5

science_fiction ~~ horror = 0.5

When this program is loaded an internal procedure constructs a similarity re-

lation (i.e. a reflexive, symmetric, transitive, fuzzy binary relation) on the syntac-

tic domain of the program alphabet. Therefore, all kind of books considered as

interesting are retrieved by the query “BPL> sv good(X)”.

The third and last example shows how similarity equations can be used to obtain

a clean separation between logic and control in a pattern matching program.

Example 2.3 The following program gives the number of occurrences of a pattern

[e1,e2] in a list of elements, where e1 must be a and e2 may be b or c.

% SIMILARITY EQUATIONS

e1~~a=1.

e2~~b=1.

e2~~c=1.

% FACTS and RULES

search([],0).

search([X|R],N):-search1([X|R],N).

search1([],0).

search1([X|R],N):-X~~e1 -> search2(R,N);

search1(R,N).

search2([],0).

search2([X|R],N):-X~~e2 -> search(R,N1),N is N1+1;

search(R,N).

occurrences(N):-search([a,b,c,a,c,b,d,a,c,d,b,b,a,b,c,c,a,c,a,b],N).

Here, “~~” is the weak unification operator and the expression “X~~e1” means

that (the value bound to) “X” and “e1” weak unify with approximation degree

greater than zero. Since the programmer wrote the similarity equation “e1~~a=1”

in the program, the expression will success when X will be instantiated to “a”. The

same can be said for the expression “X~~e1”.

It is easy to adapt the former program permitting the search of more com-

plex combinations of patterns. For instance, introducing the similarity equation:

4

Julian-Iranzo et al.

e1~~b=1.

In order to reach our goal, in this case, it is mandatory not to generate the

transitive closure of the fuzzy relation defined by the set of similarity equations.

This can be done by means of the BPL directive “:- transitivity(no), which

inhibits the construction of the transitive closure, during the translating phase.

The idea is to avoid the ascription of “e1” and “e2” to the same equivalence class,

what will be a problem for the intended behavior of the new program.

Summarizing, the following program will count the number of occurrences of a

pattern [e1,e2] in a list of elements, where e1 may be a or b and e2 may be b or

c.

% BPL DIRECTIVE

:- transitivity(no)

% SIMILARITY EQUATIONS

e1~~a=1.

e1~~b=1.

e2~~b=1.

e2~~c=1.

% FACTS and RULES

search([],0).

search([X|R],N):-search1([X|R],N).

search1([],0).

search1([X|R],N):-X~~e1 -> search2(R,N);

search1(R,N).

search2([],0).

search2([X|R],N):-X~~e2 -> search(R,N1),N is N1+1;

search(R,N).

occurrences(N):-search([a,b,c,a,c,b,d,a,c,d,b,b,a,b,c,c,a,c,a,b],N).

3 Bousi∼Prolog Structure

The Bousi∼Prolog system we are presenting is a prototype, high level implemen-

tation written on top of SWI-Prolog [21] and is publicly available 6 . The complete

implementation consists of about 900 lines of code. Figure 1 shows the structure of

the BPL system through a functional dependency graph.

The bousi module contains the bpl shell/0main predicate which implements a

command shell. Hence, providing the interface for the user. The relevants command

are:

• ld -> (load) reads a file containing the source program for loading;

• lt -> (list) displays the current loaded program;

6 The prototype implementation of the Bousi∼Prolog system can be found at the URL address
http://www.inf-cr.uclm.es/www/pjulian/bousi.html.

5

Julian-Iranzo et al.

bousi

parserTranslator

closure

utilities evaluator

builtin

bplHelp

Fig. 1. Functional dependency graph of the Bousi∼Prolog system

• sv -> (solve) solves a (possibly conjunctive) query;

• lc -> (lambda-cut) reads or sets the lower bound for the approximation degree

in a weak unification process (see later for a more detailed explanation of this

feature).

The rest of commands are implemented as interface to the (unix) system environ-

ment.

The bplHelp module provides on-line explanation about the syntax of the com-

mands and how they work.

The parserTranslator module contains the parseTranslate/2 predicate This

predicate parses a BPL InputFile and translates (compiles) it into an OutputFile

which contains an intermediate Prolog representation of the source BPL code. The

intermediate Prolog code is called “TPL code” (Translated BPL code). The parser

phase is delegated to standard Prolog predicates. This is an imperfect solution

because we lost the control of the whole parsing process and it imposes some real

limitations 7 . However this is the cheapest solution. The improvement of the parser

phase is let for future work.

The evaluator module implements the weak unification algorithm and the weak

SLD resolution principle, which is the operational semantics of the language. Weak

SLD resolution is implemented by means of a meta-interpreter [19]. The next two

sections are devoted to precise the details of this implementation. The evaluator

module uses the builtin module, which contains a relation of predicates which are

sent directly to the SWI-Prolog interpreter.

The utillities module contains a repository of predicates used by other mod-

ules.

A schematic overview of the translation, load and execution of BPL programs

is shown in Figure 2. In this figure, boxes denote different components of the

system and names in boldface denote (intermedite) files. The source code of the

BPL program must be stored in a file with the suffix “.bpl” (e.g., prog.bpl). The

parserTranslator parses the BPL source file and translates (compiles) it into an

intermediate Prolog representation of the source BPL code, which is stored in a

file with the suffix “.tpl”. Finally, the clauses in the TPL file are loaded into the

7 For instance, we cannot use operators defined by the user, that is the “:- op(, ,)” directive.

6

Julian-Iranzo et al.

parserTranslator
loaderprog.tpl

evaluator

Results

Prolog Working
Space

Goals

prog.bpl

Fig. 2. Flow diagram overview of the Bousi∼Prolog system

Prolog workspace. Then, the system is ready to admit queries which are solved by

the evaluator meta-interpreter.

4 Similarity Equations and Weak Unification

The weak unification algorithm operates on the basis of a similarity relation. A

similarity relation on a set U is a fuzzy binary relation on U×U , that is, a mapping

R : U × U → [0, 1], holding the following properties: reflexive; symmetric and

transitive. In this context, “transitive” means that R(x, z) ≥ R(x, y)△R(y, z) for

any x, y, z ∈ U ; where the operator ‘△’ is an arbitrary t-norm. Following [18], in

the sequel, we restrict ourselves to similarity relations on a syntactic domain where

the operator △ = ∧ (that is, it is the minimum of two elements).

Similarity equations of the form “<symbol> ~~ <symbol> = <degree>” are

used to represent an arbitrary fuzzy binary relation R. A similarity equation

a ∼∼ b = α is representing the entry R(a, b) = α. Internally, a similarity equation

like the last one is coded as: sim(a, b, α).

The user supplies an initial subset of similarity equations and then, the system

automatically generates a reflexive, symmetric, transitive closure to obtain, by de-

fault, a similarity relation. However, if the BPL directive “:- transitivity(no)”

is included at the beginning of a BPL program, only the reflexive, symmetric closure

is computed. Therefore, a similarity equation a ∼∼ b = α can be understood in

both directions: a is similar to b and b is similar to a with degree α.

An foreign predicate, closure/3, written in the C programming language [11],

implements the algorithm for the construction of the similarity relation. This algo-

rithm, has three steps. The first step computes the reflexive closure of the initial

relation; the second the symmetric closure. The third step is an extension of the

well-known Warshall’s algorithm for computing the transitive closure of a binary

relation, where the classical meet and joint operators on the set {0, 1} have been

changed by the maximum (MAX) and the minimum (MIN) operators on the real

interval [0, 1] respectively:

for(k = 0; k < nTotal; k++) {

for(i = 0; i < nTotal; i++) {

for(j = 0; j < nTotal; j++) {

dMatriz[i][j] = MAX(dMatriz[i][j],

7

Julian-Iranzo et al.

MIN(dMatriz[i][k], dMatriz[k][j]));

}

}

}

Here, initially, dMatrix is the adjacency matrix representing the reflexive, symmet-

ric closure of the original fuzzy binary relation on a syntactic set. An interesting

property of this algorithm is that it preserves the approximation degrees provided

by the programmer in the similarity equations. See [9] for more details about the

construction of a similarity relation. How to link a foreign predicate into the Prolog

environment is explained in the SWI-Prolog reference manual [21].

The specific weak unification algorithm is implemented following closely Martelli

and Montanari’s unification algorithm for syntactic unification [14], but as usual in

Prolog systems we do not use occur check:

% Term decomposition

unify(T1,T2,D) :- compound(T1), compound(T2), !,

functor(T1, F1, Aridad1),

functor(T2, F2, Aridad2),

Aridad1 =:= Aridad2,

sim(F1, F2, D1),

T1 =.. [F1| ArgsT1],

T2 =.. [F2| ArgsT2],

unifyArgs(ArgsT1, ArgsT2, D2), min(D1, D2, D).

unify(C1, C2, D) :- atomic(C1), atomic(C2), !, sim(C1, C2, D).

% Swap

unify(T,X, D) :- nonvar(T), var(X), !, unify(X,T, D).

% Variable elimination

unify(X,T, 1) :- var(X), X = T.

The predicate unifyArgs(ArgsT1, ArgsT2, D) checks if the terms (arguments) in

the lists ArgsT1 and ArgsT2 can unify one with each other, obtaining a certain

approximation degree D.

In order to understand the behavior of the predicate unify/3, the following

comments are useful:

• As stated by the first clause defining the predicate unify/3 the weak unification

algorithm does not produce a failure when there is a clash of two syntactical

distinct symbols F1 and F2 whenever they are similar. That is, the goal sim(F1,

F2, D1) success with approximation degree D1, because there exists a similarity

equation linking F1 and F2.

• The third clause defining the predicate unify/3 is the point where variables are

instantiated, generating the bindings of the weak most general unifier.

Hence, this algorithm provides a weak most general unifier as well as a numerical

value, called the unification degree in [18]. Intuitively, the unification degree will

8

Julian-Iranzo et al.

represent the truth degree associated with the (query) computed instance.

Bousi∼Prolog implements a weak unification operator, denoted by “∼∼”,

which is the fuzzy counterpart of the syntactical unification operator “=” of

standard Prolog. It can be used, in the source language, to construct expres-

sions like “Term1 ~~ Term2 =:= Degree” which is interpreted as follows: The

expression is true if Term1 and Term2 are unifiable by similarity with approx-

imation degree AD equal to Degree. In general, we can construct expressions

“Term1 ~~ Term2 <op> Degree” where “<op>” is a comparison arithmetic opera-

tor (that is, an operator in the set {=:=, =\=, >, <, >=, =<}). Observe that the

expression “Term1 ~~ Term2” is syntactic sugar of “Term1 ~~ Term2 > 0”. Also it

is possible the following construction: Term1 ~~ Term2 = Degree which success if

Term1 and Term2 are weak unifiable with approximation degree Degree; otherwise

fails. When Degree is a variable it is bound to the unification degree of Term1 and

Term2. These expressions may be introduced in a query as well as in the body of a

clause.

Example 4.1 Assume that the BPL program of Example 2.2 is load. The following

is a simple session with the BPL system:

BPL> sv adventures(X) ~~ interesting(Y) > 0.5

With approximation degree: 1

X = _G1248

Y = _G1248

Yes

BPL> sv adventures ~~ mystery

With approximation degree: 1

Yes

Both goals success with approximation degree 1 because: adventures(X) and

interesting(Y) weak unify with unification degree 0.9, greater than 0.5;

adventures and mystery trivially weak unify with unification degree 0.5, greater

than 0; and the comparison operator is a crisp one.

BPL> sv adventures(X) ~~ mystery(Y) = D

With approximation degree: 1

X = _G1714

Y = _G1714

D = 0.5;

No answers

This goal success with approximation degree 1 because it is completely true that

adventures(X) and mystery(Y) weak unify with unification degree 0.5. There are

not more answers since only a weak unifier representative is returned.

Note that the last goal is equivalent to the following one:

BPL> sv unify(adventures(X), mystery(Y), D)

9

Julian-Iranzo et al.

With approximation degree: 1

X = _G2522

Y = _G2522

D = 0.5

Yes

Finally observe that Bousi∼Prolog also provides the standard syntactic unifica-

tion operator “=”. The operator symbol “=” is overloaded and it can be used in

different contexts with different meanings: i) it behaves as an identity when it is

used inside a similarity equation or inside the construction “”; ii) it behaves as the

syntactic unification operator when it is used dissociated of the weak unification

operator “~~”.

5 Operational Semantics

Let Π be a set of Horn clauses and R a similarity relation on the first order alphabet

induced by Π. We define Weak SLD (WSLD) resolution as a transition system

〈E,=⇒WSLD〉 where E is a set of triples 〈G, θ, α〉 (goal, substitution, approximation

degree), that we call the state of a computation, and whose transition relation

=⇒WSLD⊆ (E × E) is the smallest relation which satisfies:

C = (A ←Q) << Π,σ = wmgu(A,A′) 6= fail, λ = R(σ(A),σ(A′))

〈(←A′,Q′), θ, α〉 =⇒WSLD 〈← σ(Q,Q′), σ ◦ θ, λ ∧ α〉

where Q, Q′ are conjunctions of atoms and the notation “C << Π” is representing

that C is a standardized apart clause in Π.

A WSLD derivation for Π ∪ {G0} is a sequence of steps

〈G0, id, 1〉 =⇒WSLD . . . =⇒WSLD 〈Gn, θn, λn〉.

And a WSLD refutation is a WSLD derivation 〈G0, id, 1〉 =⇒WSLD

∗ 〈2, σ, λ〉,

where σ is a computed answer and λ is its approximation degree. Certainly, a WSLD

refutation computes a family of answers, in the sense that, if σ = {x1/t1, . . . , xn/tn}

then whatever substitution θ′ = {x1/s1, . . . , xn/sn}, holding that si ≡R,λ ti (i.e.,

R(si, ti) ≥ λ), for any 1 ≤ i ≤ n, is also a computed answer with approximation

degree λ. However, in practice, we only return a representative of the family of

answers.

As it was commented in Section 3, the parseTranslate/2 predicate of the

parserTranslator module translates (compiles) rules and facts of the source BPL

code into an intermediate Prolog code representation which is called “TPL code”

(Translated BPL code). More precisely, a rule “Head :- Body” is translated to

“rule(Head, Body)” and a fact “Head” to “rule(Head, true)”

A meta-interpreter executes the BPL code according to the WSLD resolution

principle. Figure 3 shows the implementation of the meta-interpreter.

The following clauses are the core of the WSLD resolution principle implemen-

tation:

solve(true,1):- !.

10

Julian-Iranzo et al.

% solve(Goal): solve Goal giving a computer answer
% and its approximation degree.
solve(Goal) :- solve(Goal, Degree),

write(’With approximation degree: ’),
write(Degree),
nl.

% solve(Goal, Degree): true if there is a refutation
% for ’Goal’ with approximation degree ’Degree’.
solve(true,1):- !.
% Crisp Negation As Failure
solve(\+(A), D) :- !, (solve(A, DA) -> (DA = 1 -> fail;

D = 1);
D = 1).

solve((A,B), D) :- !,
solve(A, DA),
solve(B, DB),
min(DA, DB, D).

solve((C -> A), D):- !, (solve(C, DC) ->
solve(A, DA), min(DC, DA, D)).

solve((C -> A;B), D):- !, (solve(C, DC) ->
solve(A, DA), min(DC, DA, D) ;

solve(B, DB), D = DB).
solve((A;B), D) :- !, (solve(A, DA), D = DA ;

solve(B, DB), D = DB).
% Weak Negation As Failure
solve(not(A), D) :- !, (solve(A, DA) -> (DA = 1 -> fail;

D is 1 - DA);
D = 1).

solve(A, 1) :- built(A), !, call(A).
solve(A, D) :- rule(H,B),

unify(A, H, AD),
lambdaCut(L),
AD >= L,
solve(B, DB),
min(AD, DB, D).

Fig. 3. A meta-interpreter for executing BPL code

solve((A,B), D) :- !,

solve(A, DA),

solve(B, DB),

min(DA, DB, D).

solve(A, D) :- rule(H,B),

unify(A, H, AD),

lambdaCut(L),

AD >= L,

solve(B, DB),

min(AD, DB, D).

This clauses asserts that:

• The goal true is solved with approximation degree 1.

• In order to solve a conjunctive goal (A, B) firts solve the atom A, obtaining an

approximation degree DA, and then the remaining conjunctive goal B, obtaining

an approximation degree DB. The approximation degree of the hole conjunctive

goal is the minimum of DA and DB.

• In order to solve the atom A, select a rule whose head H and A weak unify with

approximation degree AD. If AD is greater or equal than the current LambdaCut

value L (see below), solve the body B of the rule, obtaining an approximation

degree DB. Then, the approximation degree of the goal is the minimum of AD and

DB.

11

Julian-Iranzo et al.

6 Distinct Classes of Cuts and Negations

We can impose a limit to the expansion of the search space in a computation by

what we called a “lambda-cut”. When the LambdaCut flag is set to a value different

to zero, the weak unification process fails if the computed approximation degree

goes below the stored LambdaCut value. Therefore, the computation also fails and

all possible branches starting from that choice point are discarded. By default

the LambdaCut value is zero (that is, no restriction to a computation is imposed).

However, the LambdaCut flag can be set to a different value by means of a lambdaCut

directive introduced inside of a BPL program or the lc command of the BPL shell.

The lc command can be used to show which is the current Lambdacut value or to

set a new Lambdacut value.

Bousi∼Prolog can use the standard cut predicate, “!” of the Prolog language,

but, in an indirect way, embedded into more declarative predicates and operators,

such as: not (weak negation as failure —see below—), \+ (crisp negation as failure

—see below—) and -> (if-then and if-then-else operators).

On the other hand Bousi∼Prolog provides an operator, “\+”, for crisp negation

as failure and a predicate “not” for weak negation as failure. The implementation

of these distinct classes of Negations is as follows:

• A goal \+(A) fails only if solve(A, DA) successes with approximation degree DA

=1. Otherwise \+(A) is true with approximation degree 1. That is “\+” operates

as the classical negation as failure.

% Crisp negation as failure

solve(\+(A), D) :- !, (solve(A, DA) -> (DA = 1 -> fail;

D = 1);

D = 1).

• A goal not(A) fails only if solve(A, DA) success with approximation degree DA

=1. When solve(A, DA) success, but the approximation degree DA is lesser than

1, not(A) also success with approximation degree D = 1 - DA. If it is the case

that solve(A, DA) fails, not(A) success with approximation degree D = 1.

% Weak negation as failure

solve(not(A), D) :- !, (solve(A, DA) -> (DA = 1 -> fail;

D is 1 - DA);

D = 1).

7 Related Work

Several fuzzy extensions of the resolution rule [16], used in classical logic program-

ming, with similarity relations have been proposed during the last decade. Although

all these approaches relay in the replacement of the classical syntactic unification

algorithm by a similarity-based unification algorithm, we can distinguish two main

lines of research:

• The first one is represented by the theoretical works [5,6] and [4], where the

concept of unification by similarity was first developed. However they use the

cumbersome notions of clouds, systems of clouds and closures operators in its

12

Julian-Iranzo et al.

definition. From our point of view, these notions endangers the efficiency of the

operational semantics which uses them, because they are costly to compute. The

main practical realization of this line of work is the fuzzy logic language LIKELOG

[3]: it is mainly implemented in Prolog using the aforementioned concepts and

rather direct techniques.

• The second line of research is represented by the theoretical works [17] and [18],

where the concept of weak unification was developed. The proposed algorithm

is a clean extension of the Martelli and Montanari’s unification algorithm for

syntactic unification [14]. From our point of view, the weak unification algorithm

is better suited for computing. As it was commented, the combination of the

weak unification algorithm with the SLD resolution rule produces the weak SLD

operational semantics we use in our Bousi∼Prolog implementation. In [13], an

implementation based the weak SLD operational semantics is refered.

Despite the interest of systems like LIKELOG and the one described in [13], less

implementations details are provided. Also, at the best of our knowledge, the

implementation of these systems are not publicly available and, therefore, it is

difficult an experimental comparison with our system.

8 Conclusions and Further Research

In this paper we present the main features an implementation details of a pro-

gramming language that we call Bousi∼Prolog (“Bousi” is the spanish acronym for

“fuzzy unification by similarity”). It can be seen as an extension of Prolog which

incorporates similarity-based fuzzy unification, leading to a system well suited to

be used for approximate reasoning and flexible query answering.

The so called weak unification algorithm [18] is based on similarity relations

defined on a syntactic domain. At a syntactic level, Bousi∼Prolog represents simi-

larity relations by means of similarity equations. The syntax of Bousi∼Prolog is an

extension of the standard Prolog language: in general, a Bousi∼Prolog program is a

set of Prolog clauses plus a set of similarity equations.

Bousi∼Prolog implements a weak unification operator, denoted by “∼∼”, which

is the fuzzy counterpart of the syntactical unification operator “=” of standard

PrologṪhe weak unification operator can be included in a query or in the body of a

rule.

The weak SLD resolution principle [18] used by Bousi∼Prolog as operational

semantics, is implemented by means of a meta-interpreter. This is a cheap solution

from the implementation point of view but expensive from the point of view of the

efficient execution.

Although Bousi∼Prolog implements the main features of a standard Prolog other

features, such as working with modules, are not covered. In the future we want to

add these missing features to our language. Also we want to incorporate new non

standard features and to improve certain modules of our system, such as the parser.

On the other hand, in order to solve the efficiency problem, we have investigated

how to incorporate the weak unification algorithm into the Warren Abstract Ma-

chine. Some preliminary results for a pure subset of Prolog can be find in [10]. Also

13

Julian-Iranzo et al.

we want to develop this line of work to cover all the present and future features of

Bousi∼Prolog in a more efficient implementation.

References

[1] K. R. Apt. From Logic Programming to Prolog. Prentice Hall, Englewood Cliffs, NJ, 1997.

[2] J. F. Baldwin, T. P. Martin, and B. W. Pilsworth. Fril- Fuzzy and Evidential Reasoning in Artificial
Intelligence. John Wiley & Sons, Inc., 1995.

[3] Francesca Arcelli Fontana and Ferrante Formato. Likelog: A logic programming language for flexible
data retrieval. In Proceedings of the 1999 ACM Symposium on Applied Computing (SAC’99), February
28 - March 2, 1999, San Antonio, Texas, USA, pages 260–267, 1999.

[4] Francesca Arcelli Fontana and Ferrante Formato. A similarity-based resolution rule. Int. J. Intell.
Syst., 17(9):853–872, 2002.

[5] Ferrante Formato, Giangiacomo Gerla, and Maria I. Sessa. Extension of logic programming by
similarity. In Maria Chiara Meo and Manuel Vilares Ferro, editors, APPIA-GULP-PRODE, pages
397–410, 1999.

[6] Ferrante Formato, Giangiacomo Gerla, and Maria I. Sessa. Similarity-based unification. Fundam.
Inform., 41(4):393–414, 2000.

[7] S. Guadarrama, S. Muñoz, and C. Vaucheret. Fuzzy Prolog: A new approach using soft constraints
propagation. Fuzzy Sets and Systems, Elsevier, 144(1):127–150, 2004.

[8] M. Ishizuka and N. Kanai. Prolog-ELF Incorporating Fuzzy Logic. In Aravind K. Joshi, editor,
Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI’85). Los
Angeles, CA, August 1985., pages 701–703. Morgan Kaufmann, 1985.

[9] P. Julián-Iranzo. A procedure for the construction of a similarity relation. In M. Ojeda, editor, In Proc.
of the 12th International Conference on Information Processing and Management of Uncertainty in
Knoledge-based Systems (IPMU 2008), June 22-27, 2008, Málaga, Spain, page 8. U. Málaga, 2008.
(Accepted for publication).

[10] P. Julián-Iranzo and C. Rubio-Manzano. A wam implementation for flexible query answering. In A.P.
del Pobil, editor, In Proc. of the 10th IASTED International Conference on Artificial Intelligence and
Soft Computing (ASC 2006), August 28-30, 2006, Palma de Mallorca, pages 262–267. ACTA Press,
2006.

[11] B.W. Kernighan and D.M. Ritchie. The C Programming Language, 2nd Edition. Prentice-Hall, 1988.

[12] R.C.T. Lee. Fuzzy Logic and the Resolution Principle. Journal of the ACM, 19(1):119–129, 1972.

[13] Vincenzo Loia, Sabrina Senatore, and Maria I. Sessa. Similarity-based sld rsolution and its
implementation in an extended prolog system. In FUZZ-IEEE, pages 650–653, 2001.

[14] A. Martelli and U. Montanari. An Efficient Unification Algorithm. ACM Transactions on Programming
Languages and Systems, 4:258–282, 1982.

[15] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Similarity-based unification: a multi-adjoint approach.
Fuzzy Sets and Systems, 146(1):43–62, 2004.

[16] J.A. Robinson. A Machine-oriented Logic Based on the Resolution Principle. Journal of the ACM,
12(1):23–41, January 1965.

[17] Maria I. Sessa. Flexible querying in deductive database. In A. Di Nola and G. Gerla, editors, School on
Soft Computing at Salerno University: Selected Lectures 1996-1999, pages 257–276. Springer Verlag,
2000.

[18] Maria I. Sessa. Approximate reasoning by similarity-based sld resolution. Theoretical Computer
Science, 275(1-2):389–426, 2002.

[19] L. Sterling and E. Shapiro. The Art of Prolog (Second Edition). The MIT Press, Cambridge, MA,
1994.

[20] P. Vojtas. Fuzzy Logic Programming. Fuzzy Sets and Systems, 124(1):361–370, 2001.

[21] J. Wielemaker. SWI-Prolog 5.6 Reference Manual. Technical report: vesion 5.6.52, March 2008,
University of Amsterdam, 2008.

14

	Introduction
	Motivating examples
	BousiProlog Structure
	Similarity Equations and Weak Unification
	Operational Semantics
	Distinct Classes of Cuts and Negations
	Related Work
	Conclusions and Further Research
	References

