PROLE 2009

UNICORN: A Programming Environment for
Bousi~Prolog.

1 2

Pascual Julian-Iranzo® Clemente Rubio-Manzano

Dep. of Information Technologies and Systems,
University of Castilla-La Mancha,
Spain.

Abstract

Bousi~Prolog is a fuzzy logic programming language which is an extension of the standard Prolog language.
The Bousi~Prolog operational semantics is an adaptation of the SLD resolution principle, where classical
unification has been replaced by a fuzzy unification algorithm based on proximity relations. UNICORN
is a programming environment for the Bousi~Prolog language. This environment will provide resources to
edit, save, open, compile and run Bousi~Prolog programs comfortably, in addition to various options
for supporting programmers: commands, directives and visualization windows. In this paper we summarize
the main features of the UNICORN environment and we provide some insides about its implementation.

Keywords: Fuzzy Logic Programming, Fuzzy Prolog, Unification by Similarity, Weak SLD Resolution,
Warren Abstract Machine.

1 Introduction.

Bousi~Prolog (BPL, for short) [4] is an extension of the standard Prolog language.
Its operational semantics is an adaptation of the SLD resolution principle where
classical unification has been replaced by a fuzzy unification algorithm based on
proximity relations defined on a syntactic domain. Proximity relations are fuzzy re-
lations that fulfill the reflexive and symmetric properties ®. Hence, the operational
mechanism is a generalization of the similarity-based SLD resolution principle [9].
Informally, this weak unification algorithm states that two terms f(¢1,...,t,) and
g(s1,- .., sy) weakly unify if the root symbols f and g are approximate and each of
their arguments t; and s; weakly unify. Therefore, the weak unification algorithm
does not produce a failure when there is a clash of two syntactical distinct symbols,

* This work has been partially supported by FEDER and the Spanish Science and Innovation Ministry
under grant TIN 2007-65749 and by the Castilla-La Mancha Administration under grant PII1109-0117-
4481.

I Email: Pascual.Julian@uclm.es
2 Email: Clemente.Rubio®alu.uclm.es
3 When, in addition, a fuzzy binary relation fulfills the transitive property, we are in presence of a similarity
relation.
This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

mailto:Pascual.Julian@uclm.es
mailto:Clemente.Rubio@alu.uclm.es

JULIAN-IRANZO et al.

whenever they are approximate, but a success with a certain approximation degree.
Hence, Bousi~Prolog computes substitutions as well as approximation degrees.

The aim of Bousi~Prolog is the management of uncertainty using declarative
techniques. As it was shown in [4], there exist several practical applications for
a language with the aforementioned characteristics: flexible query answering; ad-
vanced pattern matching; information retrieval where textual information is selected
or analyzed using an ontology; text cataloging and analysis; etc.

Bousi~Prolog is publicly available and can be found at the URL address

http://www.inf-cr.uclm.es/www/pjulian/bousi.html. Currently it is deliv-
ered in two implementation formats: a high level and a low level implementation.
The high level implementation [4] is written in Prolog through a meta-interpreter.
Hence it may present efficiency problems. In order to solve them, we have investi-
gated how to incorporate the weak unification algorithm into the Warren Abstract
Machine (WAM) [11], leading to a low level implementation of the Bousi~Prolog
language, which consists of an architecture compounded by a compiler and an en-
largement of the WAM able to execute BPL programs efficiently. The extension of
the WAM able of handling fuzzy relations is called Similarity-based WAM (SWAM)
by historical reasons (although the current implementation allows the treatment of
proximity relations as well as similarity relations). The SWAM was implemented
mainly using the standard techniques of [1] and it is described in [5].

To allow the development of BPL programs, a programming environment for
this language, called UnicorN, has been created. This environment will provide
resources to edit, save, open, compile and run BPL programs in a comfortable,
easy, usable way, in addition to various options for supporting programmers: com-
mands, directives and visualization windows, that help the programmer to obtain a
better understanding of the BPL programs behavior. In this paper we summarize
the main features of the UNICORN environment and we provide some insides about
its implementation. As imperative and object oriented languages have really good
integrated development environments (IDEs) with graphical user interfaces that al-
low people to interact through direct manipulation of graphical elements, we take
inspiration on these interfaces to accomplish our objective.

Before ending this introductory section let us comment some pieces of related
work: The first one is represented by the theoretical work [3], whose main practical
realization is the fuzzy logic language LIKELOG [2] (an interpreter implemented in
Prolog using rather direct techniques and cumbersome concepts). The second line
of research is the closest to ours and it is based on the theoretical work [9]. In [6],
a similarity-based logic programming language, named SilLog, was presented. SilLog
is an interpreter written in Java. Both approaches are based on an extension of the
SLD resolution principle with the ability of dealing with similarity relations.

Neither LIKELOG nor SiLog are publicly available and therefore a practical com-
parison is impossible. However, we can enumerate three important features of the
Bousi~Prolog language that distinguish it from these other proposals:

(i) Bousi~Prolog uses proximity relations (as well as similarity relations), therefore
its operational semantics is more general and flexible than the ones used by
LIKELOG and SiLog which are exclusively based on similarity relations.

JULIAN-IRANZO et al.

(ii) In order to obtain a proximity or a similarity relation, Bousi~Prolog gives
automatic support to the user for the construction of a reflexive, symmetric
and/or transitive closure, starting from an arbitrary fuzzy binary relation.

(iii) Bousi~Prolog is a true Prolog extension and not a simple interpreter able to
execute a weak SLD resolution procedure.

2 The Bousi~Prolog Programming Language.

In this section we briefly summarize the features of Bousi~Prolog as it has been
implemented in the present version supported by the SWAM. We concentrate on
the syntactical and operational aspects.

As it was just commented, the BPL programming language is an extension of the
standard Prolog language with a proximity/similarity relation defined on a syntactic
domain. Therefore, the syntax is mainly the Prolog syntax but enriched with a
built-in symbol “~” used for describing proximity /similarity relations (actually,
fuzzy binary relations which are automatically converted into proximity /similarity
relations) by means of similarity equations of the form:

<alphabet symbol> ™ <alphabet symbol> = <similarity degree>

Although, a similarity equation represents an arbitrary fuzzy binary relation, its
intuitive reading is that two constants, n-ary function symbols or n-ary predicate
symbols are approximate or similar with a certain degree. That is, a similarity
equation a ~ b = « can be understood in both directions: a is approximate/similar
to b and b is approximate/similar to a with degree . Therefore, a Bousi~Prolog
program is a sequence of Prolog facts and rules followed by a sequence of similarity
equations.

Example 2.1 Suppose a fragment of a database that stores a semantic network
with information about people’s names and hair color, as well as the approximate

relation between black, brown and blond hair*.
% BPL directive

:- transitivity(no).

% FACTS % SIMILARITY EQUATIONS
is_a(john, person). hair_color(john,black). black™brown=0.6.
is_a(peter, person). hair_color(peter,brown) . black~blond=0.3.
is_a(mary, person). hair_color(mary,blond). blond~brown=0.6.

In a standard Prolog system, if we ask about whether peter’s hair is blond, “7-
hair_color(peter, blond)”, the system fails. However BPL allows us to obtain
the answer “Yes with 0.6”.

To obtain this answer, the BPL system operates as follows:

i) First it generates the reflexive, symmetric closure of the fuzzy relation
{R(black,brown) = 0.6, R(black,blond) = 0.3, R(blond,brown) = 0.6}, con-
structing a proximity relation. This is done at compilation time.

ii) Then, at execution time, it tries to unify the goal hair_color(peter, blond)

and (eventually) the fact hair_color(peter,brown). Because there exists the
entry R(brown, blond) = 0.6 in the constructed proximity relation (that is, brown

4 For the sake of simplicity we only consider programs without variables in the examples. Of course, BPL
permits programs and goals containing variables.

JULIAN-IRANZO et al.

is approximate to blond), the unification process succeeds with approximation
degree 0.6 and a (weak) resolution step is done, leading to the empty clause.

The above example serves to illustrate both the syntax and the operational
semantics of the language. Also, it is important to note that, in this example, to
inhibit the construction of the transitive closure (and therefore the construction of a
similarity relation) has been crucial to model the information properly and to obtain
a convenient result. This effect is obtained by the BPL directive transitivity
which disables or enables the construction of the transitive closure of a fuzzy relation
during the compilation process®. If a similarity relation would be generated, the
system would constructed the entries R(brown, blond) = 0.6 and R(blond, brown) =
0.6, overlapping the initial approximation degree provided by the user and leading
to a wrong information modeling®. Therefore, as it was commented in [10] and
this example confirms, similarity relations sometimes represent fuzzy information
incorrectly. Hence, to allow the use of proximity relations, not only increases the
expressive power of the language, but it is critical in order to solve certain problems.

On the other hand, Bousi~Prolog implements a weak unification operator, also
denoted by “~”, which is the fuzzy counterpart of the syntactical unification oper-
“=” of standard Prolog. It can be used, in the source language, to construct
expressions like “Term1 ~ Term2 =:= Degree” which is interpreted as follows: The
expression is true if Term1 and Term?2 are unifiable by similarity with approximation
degree AD equal to Degree. In general, we can construct expressions

ator

Terml ~ Term2 <op> Degree

where “<op>” is a arithmetic comparison operator (that is, an operator in the set
=:=, =\=, >, <, >=, =<}). Observe that the expression “Term1l ~ Term2” is
syntactic sugar of “Term1 ~ Term2 > 0”. These expressions may be introduced in
a query as well as in the body of a clause.
Finally the BPL system implementation covers the main features of standard
Prolog: arithmetic, lists, cut operator, input/output (read and write), negation
(predicate not), also it has some built-in predicates like assert and retract.

3 Requirements and Installation Procedure.

If you want to install the BPL system with the UNICORN environment on your
computer, you need a computer running Windows 2000/XP, Linux or Mac/OS
operating system and the Java Virtual Machine version 1.5 (JVM 1.5) installed on
it.
Therefore, you must follow these simple steps:
(i) Check if the JVM 1.5 is installed. If you need to install JVM 1.5, go to the
URL address: http://java.sun.com/javase/downloads/index_jdk5. jsp.

(ii) Download the file “UNICORN_1.0_beta.jar” into the BPL home directory.

5 Note that in the current implementation of the BPL system, transitivity(no) is the current default
option.

6 Because a person with brown hair should be closer to a person with blond hair than a person with black
hair is to a person with blond hair.

4

JULIAN-IRANZO et al.

Hilg guration Comnand

LUBEEE0Oev @ X

®

%|mijwﬂme_w]memm_)
@ O © © :

Fig. 1. The UNICORN programming environment: main window.

(iii) Execute it, according with the usual procedure used in that operating system.

Then the UNICORN environment is available (see Figure 1).

4 The UNICORN Environment.

In this section we give a brief tutorial on how to use the UNICORN environment,
which is the interface between the user and the BPL system.

The UNicorN environment is divided in two different zones: the command op-

tions zone (with the Menu Bar (1) and the Icon Bar (2) at the top of the screen)
and the windows zone. The windows zone involves five kinds of windows:

The query window (10) placed at the bottom of the screen, serves to introduce
queries, commands or data to the system.

The output window (5) shows the answers to a query and other system infor-
mation. You can delete the information in the output window, by means of the
command clear written into the query window.

The code area window (6) shows the SWAM machine code obtained after the
compilation of a source program. It is the object program executed by the abstract
machine. For instance, Figure 2 shows the SWAM machine code obtained for the
BPL program of the Example 2.1. You can delete the information in the code
area window, by typing the command reset into the query window.

The code execution window (7) shows, sequentially, the SWAM machine code
executed by the abstract machine. It can be seen as a tracer tool.

The visualization window (3,8,9) shows a graph representation (8) of the prox-
imity relation defined in the program. Also, it is shown a pictorial representation
(3) of the Prozimity Matriz, that is, an adjacency matrix representation of the
reflexive, symmetric, (and possibly) transitive closure of the original fuzzy binary

5

JULIAN-IRANZO et al.

Pl Action Configuration Comimand

SWAM Code

D BB@@@ \/ {}® Md'ls :|1.|6alJEI l!rv me else [Is a~2,,]

oo B

{=]

-cmmmm oo B

is a~21.0 retry me else [is a~3,,]
get constant [peter, A0,]
get constant [person, A1,]
proceed [,]

lis a~31.0 trust me [, ,]

0 |00~ | |h &a | LD M3 | =

get constant [mary, A0,]
get constant [persen, A1,]

hair_colorgehm black)

hait” color(peter brown hair color 1.0

biond hair_color(ma : 1 EER get constant [john, A0,]
brown il 14 et constant [black, A1, 1]
15 proceed[,,]

lhair color~2 1.0
get constant [peter, A0,]
et constant [brown, A1,]
! proceedl[,]

20 |hair color~3 1.0 trust me [, ,]

21 | Eet constant [mary, A0, |

et constant [blond, A1,]
roceed[.]

1 » =

hair_color(X black).

Fig. 2. Visualization windows, Output window and Code Area Window for the BPL program of Example 2.1.

ACTIONS OPTIONS
File Menu Icon Bar Query
Window
Creating new program New ‘White paper Icon 7crtl-N”
Save a program (Home directory) Save Diskette Icon 7 ctrl-G”
Save a program (Other directory) Save As Star diskette Icon ? ctrl-M”
Editing a program Open Opening Archive Icon ?ctrl-A”
Compilation of a program Compile OK Icon 7 ctrl-C”
Execution of a program Execute Sun Icon ?ctrl-E”
More responses ; Interrogation Icon ?ctrl-S”
Stop execution Stop Cross Icon 7 ctrl-P”

Fig. 3. Options for edit, save, compile and execute BPL programs.

relation (which is computed starting from the set of proximity equations provided
by the program). Figure 2 shows each type of visualization window with more
detail.

As we shall comment, it is also possible to open several edit windows (4) to create
or modify programs.

The UNICORN environment provides resources to edit, save, open, compile
and run BPL programs comfortably. Figure 3 summarizes the options that you can
use to perform these actions. Moreover, it has several commands useful to reset the
information shown by the output window and the code area window or to produce
some actions or activate some internal flags.

i) The command “compile” which compiles the selected program.
p
(ii) The command “clear” deletes the information shown in the output window.

(iii) The command “reset” that resets the memory layout and deletes the infor-
mation shown in the code area window.

(iv) The command “statistics” returns the time used in the last execution in
milliseconds.

(v) The command “lambdaCut” imposes a limit to the expansion of the search

6

JULIAN-IRANZO et al.

space in a computation 7. By typing “lambdaCut (N)” into the query window,
you set the value of the internal lambdacut flag to N (being N a number between
0 and 1). When the lambdacut flag is set to N, the weak unification process
fails if the computed approximation degree goes below the stored lambdacut
value N. Therefore, the computation also fails and all possible branches starting
from that choice point are discarded. By default the lambdacut flag is set to
zero (that is, no limitation is imposed). The following example illustrates the
use of the command lambda cut.

Example 4.1 Revisiting the Example 2.1, suppose that we want to fix the lambda-
cut flag to 0.5. Then you must write “lambdaCut(0.5).” into the query window,
being “Lambdacut fixed to 0.5.” the resulting message. Therefore, if we ask
again by the hair color of a person (writting the goal “hair_color(X,black).”
into the query window) the system answers “X=john with 1.0” and “X=peter
with 0.6”, but the answer “X=mary with 0.3”, whose approximation degree is
lower than 0.5, is not obtained.

5 Design and Implementation of the UNICORN Envi-
ronment.

The architecture of the BPL low level implementation is a multi-layer architecture
with three layers: the UNICORN environment, the compiler and the similarity ab-
stract machine (SWAM). It consists of over 6500 code lines, divided into 27 classes.
It has been implemented in Java, since this is an object oriented language that
possesses facilities to deploy the BPL system on the web. The BPL architecture is
depicted in Figure 4.

5.1 Similarity-based WAM.

The Similarity-based WAM (SWAM) modifies the two main parts of a standard
WAM: the memory layout and the instruction set [5]. The SWAM is executed as a
thread inherited from the class Thread. The idea is to allow a programmer to use
interactive predicates or I/O predicates like, for instance, the predicate read, for
which it is necessary that the SWAM keeps waiting while the user writes the input
data.

Ezxtension of the memory layout. The main changes are related to the incorpo-
ration of data structures that allow us to manage proximity or similarity relations.
We add the so called Proximity Matriz Area, which stores an adjacency matrix
representation of a proximity or similarity relation. Two new specific registers: the
Aprozimation Degree register (AD), which stores the current computed approxima-
tion degree of a derivation; and the Lambda-Cut register (LC) which stores the lower
bound for the approximation degree in a derivation. Also, we need to modify the
standard choice point frame structure by adding a new field, D, to save the value
stored in the AD register, prior to the creation of a choice point.

7 Observe that this limit can also be modified using the BPL directive “-lambdaCut(N).”

7

JULIAN-IRANZO et al.

i | UNICORN |

x ' v ry

SWAM | Exepute) Compile Etror
Informaltion More response ! E
' 1 v .

i ‘ : | BPL Compiler ‘

Loaﬂ
Instructions
i H v v
‘ SWaM ‘

Fig. 4. The BPL system and the UNICORN environment.

Extension of the instruction set. As the choice point frame structure has
been modified, the machine instructions that work in combination with it need
also to be modified. That is, we have to modify the instructions: try me_else,
retry me_else, trust_me and backtrack. The first three machine instructions es-
sentially update the value of the AD register and backtrack helps to recover the old
approximation degree value after a failure. On the other hand, also it is necessary to
modify some machine instructions involved in the process of argument unification,
such as: get_structure, get_constant and unify.

5.2 BPL compiler.

The structure of the BPL compiler has four main parts, being the SWAM machine
the basis for the compiler implementation: i) given a source program, the Ana-
lyzer verifies that the programs are syntactically correct and obtains the syntactic
tree which is the basis for later code generation; ii) the Similarity Generator
calculates a proximity relation or a similarity relation (if the transitivity option is
enabled) starting from the similarity equations provided by the programmer; the
proximity /similarity relation is stored into the Proximity Matrix memory area and
its information is used at compilation time, by the Adapter, and at execution time,
when it is necessary during the unification process. iii) the Adapter takes the syn-
tactic tree and the proximity or similarity relation and constructs an intermediate
representation which is used by the Code Generator to obtain the object code; iv)
finally, the Code Generator produces the machine code associated to the source
program; once the machine code is generated, it is stored in the Code Area, an
addressable array of memory words.

5.8 The UNICORN environment.

The UNIicOrN environment is the top layer of the BPL system. It has been mainly
implemented with the swing and the awt Java 1.5 packages [8], using Netbeans 5.5
as development environment [7]. It possesses a clean object oriented design. It
consists of over 1500 code lines, divided into 6 classes. Figure 5 shows a simplified
view for the UML class diagram of the UNICORN environment.

In the following we give a summary with the features of the main classes involved
in the implementation of the UNICORN environment, according with the UML de-
scription of Figure 5:

JULIAN-IRANZO et al.

| FGraph || FEditor |

[

Flde

|
FProgramCode ‘ FCodeArea |

Fig. 5. A simplified class diagram for the UNICORN environment.

—

FQuery

Flde is a frame that extends the class JFrame of the Swing package. It is the class
implementing the UNICORN graphical interface. It provides the main window and
the remainder windows are associated to this class.

FEditor is the class in charged of implementing the Unicorneditor. To fulfill this
task we mainly use the classes JInternalFrame and JTextPanel of the Swing
package for the graphical components, and FileReader or FileWritter of the IO
package, for operating with the file system. This class implements the whole func-
tionality for managing archives through the methods: openFile(), writeFile(),
save (), saveAs().

FQuery is the class implementing the input command line of the system. That
is, it enables the input for queries, commands and data. We mainly use the class
JTextField of the Swing package in its implementation. It contains important
methods to synchronize the input data with the SWAM: wait () which put the
SWAM into a waiting state until its resource becomes available; continue ()
which tells the SWAM that the data have been introduced or the resource is
available and therefore the execution can continue.

FCodeArea is the class that shows the contain of the SWAM code area. It is
instanced when the compilation process ends successfully. To implement this class
we mainly use the class JTable of the Swing package. It contains the method
loadInstructions() which loads in a JTable object (i.e., a graphical table) the
machine instructions stored in the SWAM code area.

FProgramCode shows the executed machine instructions step by step. It can be
seen as a tracer tool. In case of error it points the instruction that produces the
error. This class has been implemented using the class JTextArea of the Swing
package. It is instanced when the object program is executed by the SWAM. It
contains the method writeProgramCode () that writes the machine instructions,
as they are executed, in a JTextArea object, in order to their visualization.

FGraph is a class that shows a graphical representation of the proximity relation
defined in the program. It is instanced in compilation time when the reflexive,
symmetric, (or possibly) transitive closure (if the internal transitivity flag is set to
yes). In its implementation we employ the class JPanel of the Swing package (we
use the standard methods update (Graphics) and paintComponent (Graphics)).
It contains the methods moveVertice() and pressVertice() which allow the
user select and move the graph vertices to visualize it correctly.

9

JULIAN-IRANZO et al.

6 Conclusions and Future Work.

In this paper we presented the UNICORN environment. It is a programming environ-
ment to facilitate the development of BPL programs. It was mainly implemented
using the swing and the awt Java 1.5 packages with a clean object oriented design.
This environment integrates resources to edit, save, open, compile and run BPL
programs in a comfortable, easy, usable way. In addition it provides various tools
for supporting programmers and help them to obtain a better understanding of
programs behavior:

e A code area window that shows the SWAM machine code obtained after the
compilation of a source program.

* A tracer tool that shows, sequentially, the SWAM machine code as it is executed
by the abstract machine.

e A tool that shows a graph representation of the proximity relation defined by the
program.

An integrated development environment (IDE) additionally to a source code
specialized editor (to facilitate the program writing) and a compiler (or interpreter),
normally consists of a debugger and build automation tools. As a matter of future
work we want to extend the UNICORN environment with these kinds of tool and
features. The aim is to convert it into a true IDE.

References

[1] Ait-Kaci, H: Warren’s Abstract Machine: A Tutorial Reconstruction. The MIT Press, Cambridge, MA
(1991).

[2] Fontana, F., Formato, F.: Likelog: A logic programming language for flexible data retrieval. In: Proc.
of the ACM SAC, pp. 260-267 (1999).

[3] Fontana, F., Formato, F.: A similarity-based resolution rule. Int. J. Intell. Syst. 17(9), 853-872 (2002).

[4] Julidn, P., Rubio, C., Gallardo. J.: Bousi~prolog: a prolog extension language for flexible query
answering. In: ENTCS, p. 16. Elsevier, Amsterdam (in press, 2009).

[5] Julidn, P., Rubio, C.: A similarity-based WAM for Bousi~Prolog. In: LNCS, vol 5517, pp. 245-252.
Springer, Heidelberg (2009).

[6] Loia, V., Senatore, S., Sessa, M.I.: Similarity-based SLD resolution and its implementation in an
extended prolog system. In FUZZ-IEEE, pp. 650-653 (2001).

[7] Sun MycroSystems. NetBeans IDE. Available at: http://www.netbeans.org/ (2000).
[8] Sun MycroSystems. API Java 2. Available at: http://java.sun.com/j2se/1.5.0/docs/api/ (2004).

[9] Sessa, M.I.: Approximate reasoning by similarity-based SLD resolution. Theoretical Computer Science,
275(1-2), 389-426 (2002).

[10] Shenoi, S., Melton, A.: Proximity relations in the fuzzy relational database model. Fuzzy Sets and
Systems, 100, 51-62 (1999).

[11] Warren, D.H.D.: An Abstract Prolog Instruction Set. Technical note 309, SRI International, Menlo
Park, CA., October (1983).

10

	Introduction.
	The BousiProlog Programming Language.
	Requirements and Installation Procedure.
	The UNICORN Environment.
	Design and Implementation of the UNICORN Environment.
	Similarity-based WAM.
	BPL compiler.
	The Unicorn environment.

	Conclusions and Future Work.
	References

