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Abstract. 
This paper investigates the relationships between the test 
cases generated from state machines and their ability to 
find faults in the implementation of the class proceeding 
from the state machine. Many research works have pro-
posed strategies to generate test cases for different kinds 
of software artefacts. However, to our best knowledge, the 
“traceability” of the coverage got by the test cases in 
different abstraction levels has not been studied, so being 
this work the first (or one of the first) contribution on this 
sense. 

1. INTRODUCTION 
Testing is a process which involves all the activities of the 
software life cycle. Besides the V-Model, which proposes 
the verification and validation of all the artefacts devel-
oped during the construction of a software system, differ-
ent authors have proposed techniques for preparing test 
cases from the early stages of software development [1-
10], some of which are reviewed in the next section of this 
paper. 
 Basanieri et al. [1], for example, derive test cases for 
use cases from the sequence diagrams corresponding to 
the scenarios of the use case, translating the sequence of 
messages to test templates, which may be later combined 
with actual test data to get executable test cases. Thus, 
from the diagram shown in Figure 1 (taken from the refer-
enced work), the test templates obtained by the authors 
start with messages with no predecessor (i.e., launched by 
actors) whose execution is continued by the dependent 
messages (such as: start.open(); enterUserName(String); 
enterPassword(String); loginUser().validateUser(String, 
String).setUpSecurityContext()). Guards may imply the 
introduction of alternative messages: note in the figure 
that, after setting up the security context, the possible 
success of the operation may determine the execution 
either of newUserId or closeLoginSelection. When the test 
engineer has the test templates, he/she combines them 
with actual data in order to get test cases which likely will 
be able to be executed against the system implementation. 
Other authors have described techniques and coverage 
criteria to get test cases from other types of diagrams. 
Thus, Andrews et al. [10] propose a set of coverage crite-
ria for UML class and interaction diagrams, which help to 
know whether a test suite is adequate with respect to a 
given coverage criterion: for example, if an association 
has p..n as cardinality on one of its ends, the test suite 

should instantiate exactly p, n, p+1 and n-1 elements. In 
the same way, the Andrews et al.’s coverage criteria for 
interaction diagrams could be used to check the quality of 
the test cases produced with the Basanieri et al.’s method 

 
Figure 1. A sample sequence diagram (taken from [1]) 

 .These types of techniques emphasize the importance 
of testing from the beginning of software projects, so 
being close to the idea of continuous verification and vali-
dation, a broad concept which includes “testing”. But, in 
the specific case of the two techniques so briefly summa-
rized here, they also help to prepare the source code of test 
cases which, probably, will be executable when a version 
of the system is available. 
 It is evident, therefore, the immersion in the “testing 
culture” brought by this kind of approaches, what is a 
significant benefit for software practitioners and academ-
ics. However, it is not clear the relationship between the 
quality of a test suite defined for a UML artefact (such as a 
sequence, class or state diagram) and the quality reached 
by that very same suite on the executable code corre-
sponding to that original artefact. 
 This paper presents a first contribution on this sense, 
with the analysis of the quality that test cases generated 
from state machines get on source code. The idea is repre-
sented in Figure 2: given the behaviour of a class, speci-
fied by means of a state machine, and a state-machine 
criterion-adequate test suite got by the application of some 
technique, the goal is to study whether the test suite is still 
adequate when an executable specification of the class is 
available: this is, does remain the coverage traceable when 
the abstraction level of a software artefact is decreased? 



 Since this work is focused on statecharts, a revision of 
some works on state machines and test case generation 
from state machines is presented in Section 2. Then, Sec-
tion 3 describes two case studies and discusses the results 
obtained. Finally, Section 4 draws our conclusions and 
future lines of work. 

2. RELATED WORK 
In the current UML specification [11], state machines 
have two main uses: (1) behavioural state machines, and 
(2) protocol state machines. Since we are interested in 
studying the correspondence between models and code, 
for this context we will focus on the first use, which is also 
illustrated in Figure 2 with the Has a behaviour defined in 
relationship (which corresponds to the relationship be-
tween the Class and StateMachine UML classifiers [12]). 
  

 
Figure 2. Schema of this proposal 

 The figure also shows the translation relationship 
between the specification of a class (whose behaviour is 
annotated with a state machine) and its implementation. 
Related to this translation, Warmer and Kleppe [13] in-
formally describe an algorithm to translate class and state 
machines to source code. They say, for example:  

When the transitions are implemented by operations, 
i.e., the event at the transition is actually an operation 
call to which the object responds, the guard should be 
considered part of the precondition of the operation. In 
that case, the start state should also be considered part 
of the precondition. The end state is considered part of 
the postcondition. Implementing them follows the 
rules for implementing pre- and postconditions. 

 According to their rules, the source state can be con-
sidered part of the precondition of the implementation of 
the transitions triggered by operation calls, whilst the 
target state could be part of the postcondition. If the transi-
tion has also a guard condition, this is considered part of 
the precondition. Furthermore, if the same event occurs for 
more than one transition, all possible situations must be 
taken into account in order to correctly write the precondi-
tions, because it must be checked that the class instance is 
in an accepted state for triggering that transition. 
 Since actually a class state can be described as a func-
tion of the class fields’ values, it is easy to get a source 
code specification from a state machine. If the mechanism 

to know the instance state is costly, Warmer and Kleppe 
propose to add a field representing the state to the class, 
which must be recalculated when any of the influencing 
fields changes, and which is queried before triggering the 
transitions. Figure 3 shows the partial specification of a 
supposed banking Account with some states and transi-
tions. Some of these ones are UML Call events, since they 
correspond to operations (deposit and withdraw) of the 
Account class.  
 An account may be in the state Zero, ZeroOrPositive 
or Negative depending on the value of one or more of its 
fields (i.e., balance). As it is seen, withdraw can be exe-
cuted when the instance is in the ZeroOrPositive or in 
Negative. Thus, a simple code of withdraw could be writ-
ten such as in Figure 4. As Warmer and Kleppe suggest, 
this code could include other additional sentences to check 
that the instance reaches the expected state after executing 
the operation, so representing postconditions. 
 

 

Figure 3. Partial specification of a banking Account 
  
public void withdraw(double amount) { 
 if (state==ZeroOrPositive) { 
  if (amount>0 && balance-amount<credit)  
   showError(); 
  else if (amount>0 && balance-amount>0) 
   balance=balance-amount; 
  else if (amount>0&&balance-amount<0&&balance-amount>=credit) 
   balance=balance-amount; 
 } else if (state==Negative) { 
  if (amount>0 && balance-amount>=credit) 
   balance=balance-amount; 
 } 
} 

Figure 4. Possible code of withdraw 

 Figure 5 shows a simplified algorithm, inspired in 
[13], to get the code from a class state machine: for each 
transition, it finds the corresponding method in the class 
description and builds a new block of sentences (for com-
posing the precondition and the possible effect) which is 
added to the method. In a previous work related with a 
tool for database reverse engineering and code generation 
[14], we successfully used this very same algorithm to 



generate code for classes which proceed from database 
tables: the classes and their relationships are inferred from 
tables and foreign key relationships, and the software 
engineer may modify the default behaviour (provided by 
the tool) of the classes with the addition of one state ma-
chine to each class. The figure also includes the structure 
of both a Class as a StateMachine, which is also compati-
ble with Figure 2. 
 

Class=(Name, Fields, Operations, SateMachine) 
operation=(Name, Parameters, Return,  
 BlocksOfSentences) 
 
StateMachine=(States, Transitions, Initial∈  
 States, End∈ States) 
t ∈ Transitions=(Call, Guard, Effect) 
 
function getCodeFromSM(class : Class) { 
 ∀ t ∈ class.StateMachine.transitions { 
  op=class.findOperation (t.call) 
  Block b=new Block() 
  b.addPrecondition(t.sourceState) 
  b.addPrecondition(t.guardCondition) 
  b.addBody(t.effect) 
  op.add(b) 
 } 
} 

Figure 5. An algorithm for generating code from a 
state machine 

 In summary, it is clear that: (1) the behaviour of a 
class can be formally described by means of a state ma-
chine; and (2) there is an effective means to generate the 
code corresponding to a class annotated with a state ma-
chine. 
 In order to know whether a test suite is adequate for 
testing a software artefact, the definition of one or more 
coverage criteria for such type of artefact is required. In 
this sense, Hong et al. [8] and Offutt et al. [15] have pro-
posed the following coverage criteria for state machines: 

• State coverage [8]. A test suite T satisfies state cov-
erage if each state is covered by one or more test 
sequences in T. 

• Transition [8, 15]. A test suite T satisfies this crite-
rion if each transition is traversed by one or more 
test sequences in T. 

• Full predicate [15]. For each predicate P on each 
transition and each test clause ci in P, T must in-
clude tests that cause each clause ci in P to deter-
mine the value of P, where ci has both the values 
true and false. A predicate is a boolean expression 
whose value may determine the triggering of a tran-
sition.  

• Transition pair [15]. For each pair of adjacent tran-
sitions Si : Sj and Sj : Sk, T must contain a test that 
traverses each transition of the pair in sequence. 

• Configuration [8]. According to these authors, a 
configuration is “maximal set of states in which a 
system can be simultaneously”. Thus, a test suite T 

satisfies this criterion if each configuration is cov-
ered by one or more test cases in T. 

• Complete sequence [15]. T must contain tests that 
traverse meaningful sequences of transitions on the 
state machine. “Meaningful sequences” are chosen 
by the test engineer based on experience, domain 
knowledge and other human-based knowledge. 

 There exist subsumption relationships among criteria: 
for example, Transition pair subsumes Transitions, which 
in turn subsumes the State criterion. A criterion coverage 
C1 subsumes another criterion C2 if for every program, any 
test set T that satisfies C1 also satisfies C2 [16].  
 Once a coverage criterion has been selected, the fol-
lowing step is the generation of test cases by the applica-
tion of some algorithm which, in general, my be adopted 
from graph literature. Also, a state machine can be under-
stood as a finite automata [17] and be processed by means 
of regular expressions, whose alphabet is composed by the 
set of operations that trigger the transitions. In a previous 
work [18], we have shown a tool that generates test cases 
based on regular expressions. 

3. ANALYSIS OF TEST CASES TRACEABILITY 
With “traceability”, we reference the degree that coverage 
reached in a software artefact described at a given, high 
abstraction level, is preserved when such artefact is trans-
lated into a lower software artefact.  
 The work is focused on the traceability of test cases 
from state machines to executable specifications, for 
which we have used two experiments, one extracted from 
literature and one which has been elaborated by us.  

1) The first is the Cruise Control system, which has 
been used, among others, in references [15, 19, 
20], where the corresponding state machine can 
be found. 

2) The second one corresponds to a Manager that 
controls the light flow of two semaphores, and 
has been developed by these authors as a problem 
to be resolved by their students (Figure 6). When 
there are no pedestrians, the manager changes the 
light of both semaphores (a and b) sending them 
the change event every a fixed number of sec-
onds (60, 63, 66, 83, and 86). However, a pedes-
trian may request the red light in any of the 
semaphores: if the semaphore where red is re-
quested is in yellow or red, nothing happens; if it 
is in green and the semaphore is a, then the man-
agers changes a to yellow either 20 seconds after 
the request or, if less than 20 seconds remain, in 
this time. If the red light is requested on b, then 
the request is passed to a. 

 For both cases we have applied State, Transition and 
Transition pair coverage. Then: 

1) The two state machines have been translated into 
Java programs, according to the afore-mentioned 
translation rules [13], and the test cases for the 
three coverage criteria were generated. 



Figure 6. State machine for the semaphore’s manager example 
2) The test cases were then translated into executa-

ble Java test cases in MuJava and testooj [18, 21] 
formats (which are two tools for mutation test-
ing). 

3) The coverage reached by the Java test cases has 
been measured in terms of the mutation score us-
ing MuJava [21] (for generating mutants) and tes-
tooj [18] (for executing the test cases and analyz-
ing the results).  

 It its important to note that, since each mutant repre-
sents a faulty version of the program under test, the as-
sessment of the mutation score is an excellent predictor of 
the ability of the test suite for finding faults. 

3.1. Getting the source code 
The state machines have been faithfully translated into 
Java programs according to the algorithm presented in 
Figure 5. The code generated is freely available for 
download [22]. As an example, Figure 7 shows the source 
code of the requestRed method in the semaphores’ man-
ager, which is one of the operations accepted by the Man-
ager class (according to its state machine, Figure 6): each 
transition labelled with requestRed in the state machine is 
collected with a precondition, which proceeds from the 
corresponding source state and the possible guard condi-
tion.  

3.2. Getting the test cases 
State and transition test cases have been manually written, 
whilst transition pair cases have been generated with a 

simple program that goes through the state machines with 
that kind of route. They are shown in Figure 8. This very 
same program translates them into JUnit and MuJava test 
cases. 
public void requestRed(Semaphore semaphore) { 
 if (a.getColor()==GREEN && b.getColor()==GREEN) { 
  if (semaphore==a) { 
   long currentMiliseconds=this.watch.getCurrentMiliseconds(); 
   if (currentMiliseconds<40000) { 
    this.watch.putForward(40000); 
   } 
  } else 
    this.a.requestRed(); 
 } else if (a.getColor()==GREEN && b.getColor()==RED) { 
  if (semaphore==a) { 
   this.temporalState=true; 
  } else 
   this.a.requestRed(); 
 } 
} 

Figure 7. Source code of Manager::requestRed 

3.3. Quality of the executable test cases 
 To check the ability of the test suitse to find faults, we 
have generated mutants with MuJava. To minimize the 
cost of testing, testooj was used to reduce the mutant 
suites by applying second-order mutation [23], a technique 
which reduces the size of the mutant set to a half, reduces 
much more the number of functionally equivalent mutants 
and accelerates the mutant execution and the result analy-
sis steps. Then, the test cases were executed against the 
second-order mutants using testooj. 



 Table 1 shows the number of second-order mutants 
generated and the results of the execution of the tests 
against the mutants, expressed in terms of the mutation 
score. Note that in all the cases, the results obtained are far 
from the optimal score, which is 100%. 

  Mutation score 

Class 2nd order 
mutants State Transition Transition 

pair 
CruiseControl 56 35% 46% 83% 
Manager 47 61% 63% 80% 

Table 1. Results obtained in the two experiments 

3.4. Analysis of results 
State coverage requires that each state in the machine is 
traversed by a test case. This implies that just one of the 
transitions arriving the state is executed, maybe existing 
transitions corresponding to other methods that are not 
executed. Therefore, in terms of source code coverage, 
state coverage does not even imply method coverage 
(which is got when all methods in a class are executed at 
least once).  
 Regarding Transition coverage, it means that each 
transition is triggered at least once, what usually implies 
the execution of each method of the corresponding class: 
transitions correspond to public methods, whose effect 
clause may involve the call to a private method. Thus, 
coverage of transitions implies coverage of methods 
 The best results of Table 1 correspond to Transition 
pair coverage. According to the algorithm shown in Figure 
5, when a transition pair (p,q) is traversed by a test case on 
the state machine, this means that the preconditions for p, 
q (source states + guard conditions) have been fulfilled. 
This leads to that the executable test case forces the execu-
tion of the corresponding true branch in the conditional 
instruction (in the semaphores’ manager, for example, a 
test case goes from Green-Green to Red-Yellow, leaving 
Yellow-Green with time=63). The test case corresponding 
to the false branch is not generated if the state machine 
does not contemplate it (in the same example, the manager 
is not tested when it is in Yellow-Green and the setTime 
method is triggered with time≠63). Thus, there may be test 
situations which, being almost completely tested on the 
state machine, are not tested enough on its corresponding 
implementation. This criterion implies partial All deci-
sions coverage (All decisions is got when each decision in 
the source code is executed with true and false). 

4. CONCLUSIONS AND FUTURE WORK 
This paper has presented an initial study about the keeping 
of test cases coverage between different representations of 
the same system, expressed at different abstraction levels. 
It has focused on thee coverage criteria for class state 
machines and their corresponding source code, and has 
been applied to two single case studies.  
 In order to get better results, more experimentation 
with other systems is required. Ideally, these experiments 
should be carried out with benchmark systems (such as 
[24]), that allow to other researchers the replication of the 
experiments and the advance in this research line, that we 

believe quite interesting to a better understanding of the 
need of applying validation and testing techniques along 
the whole life cycle. 
 The investigation of test cases traceability is also 
required with other kinds of software artefacts, such as 
class and sequence diagrams, which is a research line we 
are now also starting.  
 
Pair transition test cases for CruiseControl (ign=ignition; 
activ=activate; brk=brake; dct=dct; res=resume; tF=tooFast) 
[new, ign, ign, ign, act, tF, ign -] 
[new, ign, ign, ign, act, tF, act, brk, res, tF -] 
[new, ign, ign, ign, act, tF, act, brk, res, brk, act, tF -] 
[new, ign, ign, ign, act, tF, act, brk, res, brk, act, brk, res, tF -] 
[new, ign, ign, ign, act, tF, act, brk, res, brk, act, brk, res, brk, ign, ign -] 
[new, ign, ign, ign, act, tF, act, brk, res, brk, act, brk, res, brk, brk, res, 
deact, res, ign, ign -] 
[new, ign, ign, ign, act, tF, act, brk, res, brk, act, brk, res, brk, brk, res, 
deact, act, deact, res, deact, ign -] 
[new, ign, ign, ign, act, tF, act, brk, res, brk, act, brk, res, brk, brk, res, 
deact, act, deact, res, deact, brk, act, ign -] 
[new, ign, ign, ign, act, tF, act, brk, res, brk, act, brk, res, brk, brk, res, 
deact, act, deact, res, deact, brk, res, ign -] 
[new, ign, ign, ign, act, tF, act, brk, res, brk, act, brk, res, brk, brk, res, 
deact, act, deact, res, deact, brk, ign -] 
[new, ign, ign, ign, act, tF, act, brk, res, brk, act, brk, res, brk, brk, res, 
deact, act, deact, res, deact, brk, brk -] 
[new, ign, ign, ign, act, tF, act, deact -] 
[new, ign, ign, ign, act, tF, act, ign -] 
 
Pair transition test cases for the semaphores’ Manager 
(sT=setTime; rR=requestRed; watch.gT=watch.getTime; 
GR=GREEN) 
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], sT(60), 
sT(63), sT(66), sT(83), sT(86), sT(60)] 
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], sT(60), 
sT(63), sT(66), sT(83), sT(86), rR(a) [watch.gT()<40000], sT(60)] 
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], sT(60), 
sT(63), sT(66), sT(83), sT(86), rR(a) [watch.gT()<40000], rR(a) 
[watch.gT()<40000], rR(b), sT(60)] 
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], sT(60), 
sT(63), sT(66), sT(83), sT(86), rR(a) [watch.gT()<40000], rR(a) 
[watch.gT()<40000], rR(b), rR(a) [watch.gT()<40000]] 
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], sT(60), 
sT(63), sT(66), sT(83), sT(86), rR(a) [watch.gT()<40000], rR(a) 
[watch.gT()<40000], rR(b), rR(b)] 
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], sT(60), 
sT(63), sT(66), sT(83), sT(86), rR(b)] 
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], sT(60), 
sT(63), sT(66), sT(83), rR(a), sT(86), sT(60)] 
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], sT(60), 
sT(63), sT(66), sT(83), rR(a), sT(86), rR(a) [watch.gT()<40000]] 
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], sT(60), 
sT(63), sT(66), sT(83), rR(a), sT(86), rR(b)] 
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], sT(60), 
sT(63), sT(66), sT(83), rR(b), sT(86)] 
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], rR(a) 
[watch.gT()<40000]] 
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], rR(b)] 

Figure 8. Transition pair test cases 
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