

SOME EXPERIMENTS ON TEST CASE TRACEBAILITY

Macario Polo, Beatriz Pérez and Pedro Reales

Department of Information Systems and Technologies
University of Castilla-La Mancha

Paseo de la Universidad, 4
13071-Ciudad Real (Spain)

{macario.polo,beatriz.plamancha,pedro.reales}@uclm.es

Abstract.
This paper investigates the relationships between the test
cases generated from state machines and their ability to
find faults in the implementation of the class proceeding
from the state machine. Many research works have pro-
posed strategies to generate test cases for different kinds
of software artefacts. However, to our best knowledge, the
“traceability” of the coverage got by the test cases in
different abstraction levels has not been studied, so being
this work the first (or one of the first) contribution on this
sense.

1. INTRODUCTION
Testing is a process which involves all the activities of the
software life cycle. Besides the V-Model, which proposes
the verification and validation of all the artefacts devel-
oped during the construction of a software system, differ-
ent authors have proposed techniques for preparing test
cases from the early stages of software development [1-
10], some of which are reviewed in the next section of this
paper.
 Basanieri et al. [1], for example, derive test cases for
use cases from the sequence diagrams corresponding to
the scenarios of the use case, translating the sequence of
messages to test templates, which may be later combined
with actual test data to get executable test cases. Thus,
from the diagram shown in Figure 1 (taken from the refer-
enced work), the test templates obtained by the authors
start with messages with no predecessor (i.e., launched by
actors) whose execution is continued by the dependent
messages (such as: start.open(); enterUserName(String);
enterPassword(String); loginUser().validateUser(String,
String).setUpSecurityContext()). Guards may imply the
introduction of alternative messages: note in the figure
that, after setting up the security context, the possible
success of the operation may determine the execution
either of newUserId or closeLoginSelection. When the test
engineer has the test templates, he/she combines them
with actual data in order to get test cases which likely will
be able to be executed against the system implementation.
Other authors have described techniques and coverage
criteria to get test cases from other types of diagrams.
Thus, Andrews et al. [10] propose a set of coverage crite-
ria for UML class and interaction diagrams, which help to
know whether a test suite is adequate with respect to a
given coverage criterion: for example, if an association
has p..n as cardinality on one of its ends, the test suite

should instantiate exactly p, n, p+1 and n-1 elements. In
the same way, the Andrews et al.’s coverage criteria for
interaction diagrams could be used to check the quality of
the test cases produced with the Basanieri et al.’s method

Figure 1. A sample sequence diagram (taken from [1])

 .These types of techniques emphasize the importance
of testing from the beginning of software projects, so
being close to the idea of continuous verification and vali-
dation, a broad concept which includes “testing”. But, in
the specific case of the two techniques so briefly summa-
rized here, they also help to prepare the source code of test
cases which, probably, will be executable when a version
of the system is available.
 It is evident, therefore, the immersion in the “testing
culture” brought by this kind of approaches, what is a
significant benefit for software practitioners and academ-
ics. However, it is not clear the relationship between the
quality of a test suite defined for a UML artefact (such as a
sequence, class or state diagram) and the quality reached
by that very same suite on the executable code corre-
sponding to that original artefact.
 This paper presents a first contribution on this sense,
with the analysis of the quality that test cases generated
from state machines get on source code. The idea is repre-
sented in Figure 2: given the behaviour of a class, speci-
fied by means of a state machine, and a state-machine
criterion-adequate test suite got by the application of some
technique, the goal is to study whether the test suite is still
adequate when an executable specification of the class is
available: this is, does remain the coverage traceable when
the abstraction level of a software artefact is decreased?

 Since this work is focused on statecharts, a revision of
some works on state machines and test case generation
from state machines is presented in Section 2. Then, Sec-
tion 3 describes two case studies and discusses the results
obtained. Finally, Section 4 draws our conclusions and
future lines of work.

2. RELATED WORK
In the current UML specification [11], state machines
have two main uses: (1) behavioural state machines, and
(2) protocol state machines. Since we are interested in
studying the correspondence between models and code,
for this context we will focus on the first use, which is also
illustrated in Figure 2 with the Has a behaviour defined in
relationship (which corresponds to the relationship be-
tween the Class and StateMachine UML classifiers [12]).

Figure 2. Schema of this proposal

 The figure also shows the translation relationship
between the specification of a class (whose behaviour is
annotated with a state machine) and its implementation.
Related to this translation, Warmer and Kleppe [13] in-
formally describe an algorithm to translate class and state
machines to source code. They say, for example:

When the transitions are implemented by operations,
i.e., the event at the transition is actually an operation
call to which the object responds, the guard should be
considered part of the precondition of the operation. In
that case, the start state should also be considered part
of the precondition. The end state is considered part of
the postcondition. Implementing them follows the
rules for implementing pre- and postconditions.

 According to their rules, the source state can be con-
sidered part of the precondition of the implementation of
the transitions triggered by operation calls, whilst the
target state could be part of the postcondition. If the transi-
tion has also a guard condition, this is considered part of
the precondition. Furthermore, if the same event occurs for
more than one transition, all possible situations must be
taken into account in order to correctly write the precondi-
tions, because it must be checked that the class instance is
in an accepted state for triggering that transition.
 Since actually a class state can be described as a func-
tion of the class fields’ values, it is easy to get a source
code specification from a state machine. If the mechanism

to know the instance state is costly, Warmer and Kleppe
propose to add a field representing the state to the class,
which must be recalculated when any of the influencing
fields changes, and which is queried before triggering the
transitions. Figure 3 shows the partial specification of a
supposed banking Account with some states and transi-
tions. Some of these ones are UML Call events, since they
correspond to operations (deposit and withdraw) of the
Account class.
 An account may be in the state Zero, ZeroOrPositive
or Negative depending on the value of one or more of its
fields (i.e., balance). As it is seen, withdraw can be exe-
cuted when the instance is in the ZeroOrPositive or in
Negative. Thus, a simple code of withdraw could be writ-
ten such as in Figure 4. As Warmer and Kleppe suggest,
this code could include other additional sentences to check
that the instance reaches the expected state after executing
the operation, so representing postconditions.

Figure 3. Partial specification of a banking Account

public void withdraw(double amount) {
 if (state==ZeroOrPositive) {
 if (amount>0 && balance-amount<credit)
 showError();
 else if (amount>0 && balance-amount>0)
 balance=balance-amount;
 else if (amount>0&&balance-amount<0&&balance-amount>=credit)
 balance=balance-amount;
 } else if (state==Negative) {
 if (amount>0 && balance-amount>=credit)
 balance=balance-amount;
 }
}

Figure 4. Possible code of withdraw

 Figure 5 shows a simplified algorithm, inspired in
[13], to get the code from a class state machine: for each
transition, it finds the corresponding method in the class
description and builds a new block of sentences (for com-
posing the precondition and the possible effect) which is
added to the method. In a previous work related with a
tool for database reverse engineering and code generation
[14], we successfully used this very same algorithm to

generate code for classes which proceed from database
tables: the classes and their relationships are inferred from
tables and foreign key relationships, and the software
engineer may modify the default behaviour (provided by
the tool) of the classes with the addition of one state ma-
chine to each class. The figure also includes the structure
of both a Class as a StateMachine, which is also compati-
ble with Figure 2.

Class=(Name, Fields, Operations, SateMachine)
operation=(Name, Parameters, Return,
 BlocksOfSentences)

StateMachine=(States, Transitions, Initial∈
 States, End∈ States)
t ∈ Transitions=(Call, Guard, Effect)

function getCodeFromSM(class : Class) {
 ∀ t ∈ class.StateMachine.transitions {
 op=class.findOperation (t.call)
 Block b=new Block()
 b.addPrecondition(t.sourceState)
 b.addPrecondition(t.guardCondition)
 b.addBody(t.effect)
 op.add(b)
 }
}

Figure 5. An algorithm for generating code from a
state machine

 In summary, it is clear that: (1) the behaviour of a
class can be formally described by means of a state ma-
chine; and (2) there is an effective means to generate the
code corresponding to a class annotated with a state ma-
chine.
 In order to know whether a test suite is adequate for
testing a software artefact, the definition of one or more
coverage criteria for such type of artefact is required. In
this sense, Hong et al. [8] and Offutt et al. [15] have pro-
posed the following coverage criteria for state machines:

• State coverage [8]. A test suite T satisfies state cov-
erage if each state is covered by one or more test
sequences in T.

• Transition [8, 15]. A test suite T satisfies this crite-
rion if each transition is traversed by one or more
test sequences in T.

• Full predicate [15]. For each predicate P on each
transition and each test clause ci in P, T must in-
clude tests that cause each clause ci in P to deter-
mine the value of P, where ci has both the values
true and false. A predicate is a boolean expression
whose value may determine the triggering of a tran-
sition.

• Transition pair [15]. For each pair of adjacent tran-
sitions Si : Sj and Sj : Sk, T must contain a test that
traverses each transition of the pair in sequence.

• Configuration [8]. According to these authors, a
configuration is “maximal set of states in which a
system can be simultaneously”. Thus, a test suite T

satisfies this criterion if each configuration is cov-
ered by one or more test cases in T.

• Complete sequence [15]. T must contain tests that
traverse meaningful sequences of transitions on the
state machine. “Meaningful sequences” are chosen
by the test engineer based on experience, domain
knowledge and other human-based knowledge.

 There exist subsumption relationships among criteria:
for example, Transition pair subsumes Transitions, which
in turn subsumes the State criterion. A criterion coverage
C1 subsumes another criterion C2 if for every program, any
test set T that satisfies C1 also satisfies C2 [16].
 Once a coverage criterion has been selected, the fol-
lowing step is the generation of test cases by the applica-
tion of some algorithm which, in general, my be adopted
from graph literature. Also, a state machine can be under-
stood as a finite automata [17] and be processed by means
of regular expressions, whose alphabet is composed by the
set of operations that trigger the transitions. In a previous
work [18], we have shown a tool that generates test cases
based on regular expressions.

3. ANALYSIS OF TEST CASES TRACEABILITY
With “traceability”, we reference the degree that coverage
reached in a software artefact described at a given, high
abstraction level, is preserved when such artefact is trans-
lated into a lower software artefact.
 The work is focused on the traceability of test cases
from state machines to executable specifications, for
which we have used two experiments, one extracted from
literature and one which has been elaborated by us.

1) The first is the Cruise Control system, which has
been used, among others, in references [15, 19,
20], where the corresponding state machine can
be found.

2) The second one corresponds to a Manager that
controls the light flow of two semaphores, and
has been developed by these authors as a problem
to be resolved by their students (Figure 6). When
there are no pedestrians, the manager changes the
light of both semaphores (a and b) sending them
the change event every a fixed number of sec-
onds (60, 63, 66, 83, and 86). However, a pedes-
trian may request the red light in any of the
semaphores: if the semaphore where red is re-
quested is in yellow or red, nothing happens; if it
is in green and the semaphore is a, then the man-
agers changes a to yellow either 20 seconds after
the request or, if less than 20 seconds remain, in
this time. If the red light is requested on b, then
the request is passed to a.

 For both cases we have applied State, Transition and
Transition pair coverage. Then:

1) The two state machines have been translated into
Java programs, according to the afore-mentioned
translation rules [13], and the test cases for the
three coverage criteria were generated.

Figure 6. State machine for the semaphore’s manager example
2) The test cases were then translated into executa-

ble Java test cases in MuJava and testooj [18, 21]
formats (which are two tools for mutation test-
ing).

3) The coverage reached by the Java test cases has
been measured in terms of the mutation score us-
ing MuJava [21] (for generating mutants) and tes-
tooj [18] (for executing the test cases and analyz-
ing the results).

 It its important to note that, since each mutant repre-
sents a faulty version of the program under test, the as-
sessment of the mutation score is an excellent predictor of
the ability of the test suite for finding faults.

3.1. Getting the source code
The state machines have been faithfully translated into
Java programs according to the algorithm presented in
Figure 5. The code generated is freely available for
download [22]. As an example, Figure 7 shows the source
code of the requestRed method in the semaphores’ man-
ager, which is one of the operations accepted by the Man-
ager class (according to its state machine, Figure 6): each
transition labelled with requestRed in the state machine is
collected with a precondition, which proceeds from the
corresponding source state and the possible guard condi-
tion.

3.2. Getting the test cases
State and transition test cases have been manually written,
whilst transition pair cases have been generated with a

simple program that goes through the state machines with
that kind of route. They are shown in Figure 8. This very
same program translates them into JUnit and MuJava test
cases.
public void requestRed(Semaphore semaphore) {
 if (a.getColor()==GREEN && b.getColor()==GREEN) {
 if (semaphore==a) {
 long currentMiliseconds=this.watch.getCurrentMiliseconds();
 if (currentMiliseconds<40000) {
 this.watch.putForward(40000);
 }
 } else
 this.a.requestRed();
 } else if (a.getColor()==GREEN && b.getColor()==RED) {
 if (semaphore==a) {
 this.temporalState=true;
 } else
 this.a.requestRed();
 }
}

Figure 7. Source code of Manager::requestRed

3.3. Quality of the executable test cases
 To check the ability of the test suitse to find faults, we
have generated mutants with MuJava. To minimize the
cost of testing, testooj was used to reduce the mutant
suites by applying second-order mutation [23], a technique
which reduces the size of the mutant set to a half, reduces
much more the number of functionally equivalent mutants
and accelerates the mutant execution and the result analy-
sis steps. Then, the test cases were executed against the
second-order mutants using testooj.

 Table 1 shows the number of second-order mutants
generated and the results of the execution of the tests
against the mutants, expressed in terms of the mutation
score. Note that in all the cases, the results obtained are far
from the optimal score, which is 100%.

 Mutation score

Class 2nd order
mutants State Transition Transition

pair
CruiseControl 56 35% 46% 83%
Manager 47 61% 63% 80%

Table 1. Results obtained in the two experiments

3.4. Analysis of results
State coverage requires that each state in the machine is
traversed by a test case. This implies that just one of the
transitions arriving the state is executed, maybe existing
transitions corresponding to other methods that are not
executed. Therefore, in terms of source code coverage,
state coverage does not even imply method coverage
(which is got when all methods in a class are executed at
least once).
 Regarding Transition coverage, it means that each
transition is triggered at least once, what usually implies
the execution of each method of the corresponding class:
transitions correspond to public methods, whose effect
clause may involve the call to a private method. Thus,
coverage of transitions implies coverage of methods
 The best results of Table 1 correspond to Transition
pair coverage. According to the algorithm shown in Figure
5, when a transition pair (p,q) is traversed by a test case on
the state machine, this means that the preconditions for p,
q (source states + guard conditions) have been fulfilled.
This leads to that the executable test case forces the execu-
tion of the corresponding true branch in the conditional
instruction (in the semaphores’ manager, for example, a
test case goes from Green-Green to Red-Yellow, leaving
Yellow-Green with time=63). The test case corresponding
to the false branch is not generated if the state machine
does not contemplate it (in the same example, the manager
is not tested when it is in Yellow-Green and the setTime
method is triggered with time≠63). Thus, there may be test
situations which, being almost completely tested on the
state machine, are not tested enough on its corresponding
implementation. This criterion implies partial All deci-
sions coverage (All decisions is got when each decision in
the source code is executed with true and false).

4. CONCLUSIONS AND FUTURE WORK
This paper has presented an initial study about the keeping
of test cases coverage between different representations of
the same system, expressed at different abstraction levels.
It has focused on thee coverage criteria for class state
machines and their corresponding source code, and has
been applied to two single case studies.
 In order to get better results, more experimentation
with other systems is required. Ideally, these experiments
should be carried out with benchmark systems (such as
[24]), that allow to other researchers the replication of the
experiments and the advance in this research line, that we

believe quite interesting to a better understanding of the
need of applying validation and testing techniques along
the whole life cycle.
 The investigation of test cases traceability is also
required with other kinds of software artefacts, such as
class and sequence diagrams, which is a research line we
are now also starting.

Pair transition test cases for CruiseControl (ign=ignition;
activ=activate; brk=brake; dct=dct; res=resume; tF=tooFast)
[new, ign, ign, ign, act, tF, ign -]
[new, ign, ign, ign, act, tF, act, brk, res, tF -]
[new, ign, ign, ign, act, tF, act, brk, res, brk, act, tF -]
[new, ign, ign, ign, act, tF, act, brk, res, brk, act, brk, res, tF -]
[new, ign, ign, ign, act, tF, act, brk, res, brk, act, brk, res, brk, ign, ign -]
[new, ign, ign, ign, act, tF, act, brk, res, brk, act, brk, res, brk, brk, res,
deact, res, ign, ign -]
[new, ign, ign, ign, act, tF, act, brk, res, brk, act, brk, res, brk, brk, res,
deact, act, deact, res, deact, ign -]
[new, ign, ign, ign, act, tF, act, brk, res, brk, act, brk, res, brk, brk, res,
deact, act, deact, res, deact, brk, act, ign -]
[new, ign, ign, ign, act, tF, act, brk, res, brk, act, brk, res, brk, brk, res,
deact, act, deact, res, deact, brk, res, ign -]
[new, ign, ign, ign, act, tF, act, brk, res, brk, act, brk, res, brk, brk, res,
deact, act, deact, res, deact, brk, ign -]
[new, ign, ign, ign, act, tF, act, brk, res, brk, act, brk, res, brk, brk, res,
deact, act, deact, res, deact, brk, brk -]
[new, ign, ign, ign, act, tF, act, deact -]
[new, ign, ign, ign, act, tF, act, ign -]

Pair transition test cases for the semaphores’ Manager
(sT=setTime; rR=requestRed; watch.gT=watch.getTime;
GR=GREEN)
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], sT(60),
sT(63), sT(66), sT(83), sT(86), sT(60)]
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], sT(60),
sT(63), sT(66), sT(83), sT(86), rR(a) [watch.gT()<40000], sT(60)]
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], sT(60),
sT(63), sT(66), sT(83), sT(86), rR(a) [watch.gT()<40000], rR(a)
[watch.gT()<40000], rR(b), sT(60)]
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], sT(60),
sT(63), sT(66), sT(83), sT(86), rR(a) [watch.gT()<40000], rR(a)
[watch.gT()<40000], rR(b), rR(a) [watch.gT()<40000]]
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], sT(60),
sT(63), sT(66), sT(83), sT(86), rR(a) [watch.gT()<40000], rR(a)
[watch.gT()<40000], rR(b), rR(b)]
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], sT(60),
sT(63), sT(66), sT(83), sT(86), rR(b)]
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], sT(60),
sT(63), sT(66), sT(83), rR(a), sT(86), sT(60)]
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], sT(60),
sT(63), sT(66), sT(83), rR(a), sT(86), rR(a) [watch.gT()<40000]]
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], sT(60),
sT(63), sT(66), sT(83), rR(a), sT(86), rR(b)]
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], sT(60),
sT(63), sT(66), sT(83), rR(b), sT(86)]
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], rR(a)
[watch.gT()<40000]]
[new, setA(a) [s.getColor()==GR], setB(b) [s.getColor()==GR], rR(b)]

Figure 8. Transition pair test cases

5. ACKNOWLEDGMENTS
 This work is partially supported by the PRALÍN
(Pruebas en Líneas de Producto) project, financed by the
Government of Castilla-La Mancha and the European
Social Fund, by the grant number PAC08-0121-1374.

6. REFERENCES
1. Basanieri F, Bertolino A and Marchetti E (2002). The
Cow_Suite Approach to Planning and Deriving Test Suites

in UML Projects. 5th International Conference on The
Unified Modeling Language: Springer-Verlag. LNCS.
2. Ball T, Hoffman D, Ruskey F, Webber R and White L
(2000). State generation and automated class testing.
Software Testing, Verification and Reliability, 10, p. 149-
170.
3. Baudry B, Traon YL and Sunyé G (2002). Testability
Analysis of a UML Class Diagram. 8th IEEE Symposium
on Software Metrics.
4. Burton S, Clark J and McDermid J (2001). Automatic
generation of tests from statechart specifications. Formal
Approaches to Testing of Software (FATES'01). Aalborg,
Denmark: BRICS: Basic Research in Computer Science.
5. Chow T (1978). Testing software designs modeled by
finite-state machines. IEEE Transactions on Software
Engineering, 4(3), p. 178-187.
6. Edwards SH (2000). Black-box testing using flow-
graphs: an experimental assessment of effectiveness and
automation potential. Software Testing, Verification and
Reliability, 10(4), p. 249-262.
7. Grieskamp W, Gurevich Y, Schulte W and Veanes M
(2001). Testing with abstract state machines. Formal
Methods and Tools for Computer Science. Canary Is-
lands, Spain.
8. Hong HS, Lee I and Sokolsky O (2001). Automatic
test generation from statecharts using model checking.
Formal Approaches to Testing of Software (FATES'01).
Aalborg, Denmark: BRICS: Basic Research in Computer
Science.
9. Tse T and Xu Z (1996). Test Case Generation for
Class-Level Object-Oriented Testing. 9th International
Software Quality Week. San Francisco, CA.
10. Andrews A, France R and Ghosh S (2003). Test ade-
quacy criteria for UML design models. Software Testing,
Verification and Reliability, (13), p. 95-127.
11. OMG (2005). Unified Modeling Language: Super-
structure version 2.0. Object Management Group.
12. OMG (2005). UML 2.0 OCL Specification. Object
Management Group.
13. Warmer J and Kleppe A (2003). The Object Con-
straint Language, 2nd edition: Addison Wesley.
14. Polo M, García-Rodríguez I and Piattini M (2007). An
MDA-based approach for database reengineering. Journal
of Software Maintenance & Evolution: Research and Prac-
tice, 19(6), p. 383-417.
15. Offutt AJ, Liu S, Abdurazik A and Amman P (2003).
Generating test data from state-based specifications.
Software Testing, Verification and Reliability, (13), p. 25-
53.
16. Frankl PG and Weyuker EJ (1998). An applicable
familiy of data flow testing criteria. IEEE Transactions on
Software Engineering, 14(10), p. 1483-1498.
17. Kirani S and Tsai WT (1994). Method sequence
specification and verification of classes. Journal of Object-
Oriented Programming, 7(6), p. 28-38.
18. Polo M, Piattini M and Tendero S (2007). Integrating
techniques and tools for testing automation. Software
Testing, Verification and Reliability, 17(1), p. 3-39.

19. Atlee J and Gannon J (1993). State-based model
checking of event-driven system requirements. IEEE
Transactions on Software Engineering, 19(1), p. 24-40.
20. Offutt A (1999). Generating test data from require-
ments/specifications: Phase II final report. Technical Re-
port ISE-TR-99-01, Department of Information and Soft-
ware Engineering, George Mason University. Fairfax, VA.
21. Ma Y-S, Offutt J and Kwon YR (2005). MuJava: an
automated class mutation system. Software Testing, Veri-
fication and Reliability, 15(2), p. 97-133.
22. Polo M, Reales P and Pérez B (2009). Laboratory
package for Some experiments on test case traceability.
Available at (2009, February, 28): http://www.inf-
cr.uclm.es/www/mpolo/seke09
23. Polo M, Piattini M and García-Rodríguez I (2008).
Decreasing the cost of mutation testing with second-order
mutants. Software Testing, Verification and Reliability, In
press (DOI 10.1002/stvr.392).
24. Do H, Elbaum SG and Rothermel G (2005). Support-
ing Controlled Experimentation with Testing Techniques:
An Infrastructure and its Potential Impact. Empirical
Software Engineering: An International Journal, 10(4), p.
405-435.

