
 1

Bacterio 3.0: a Mutation Tool for Multi-Class Java

Systems

Pedro Reales Mateo, Macario Polo Usaola

Alarcos Research Group

Department of Information Systems and Technologies

University of Castilla-La Mancha

Paseo de la Universidad, 4

13071-Ciudad Real

Spain

http://alarcos.esi.uclm.es/

 2

Chapter I. What is mutation testing .. 3

1 Introduction ... 3

2 Mutation types ... 5

3 Killing matrixes .. 8

Chapter II. An overview of Bacterio ... 10

1 Bacterio in a nutshell ... 10

2 Licensing .. 10

3 Third party software. ... 10

3.1 ASM. ... 10

3.2 JODE: Java Optimize and Decompile Environment 11

3.3 A DOOM image ... 11

4 The testing process with Bacterio: an overview 12

5 Mutant generation. .. 13

6 Mutant combination for producing mutant versions. 13

7 Test case execution. ... 14

Chapter III. A first execution .. 15

1 Initial execution and configuration ... 15

2 Configuration of folders ... 16

3 Mutant generation step ... 18

3.1 Selecting the elements to mutate ... 19

3.2 Selection of mutation operators ..20

3.3 Selecting options to generate versions .. 23

3.4 Generation of mutant classes and mutant versions 25

4 Test cases execution ... 27

5 Result analysis ...30

5.1 Random test cases .. 33

5.2 Enriching the test suite with more test cases 35

5.3 Detection of equivalent versions .. 39

5.4 Exploratory test cases ... 40

5.5 Parallel Execution .. 44

5.6 Exploring the remaining options of Bacterio 49

6 The Mutation Process With Baterio: Reducing the effort of testers. 57

 3

Chapter I. What is mutation testing

1 Introduction

Mutation is a testing technique which relies in the capability of test cases to find

faults on the system under test. Mutation has been developed by researchers and is also

mainly applied by researchers. After 30 years of research, we consider that mutation is

mature enough to be transferred to industry.

Being S the system under test, a mutant Mi of S is a copy of S which contains a

change. Mutation is applied with mutation tools. From the system S, a mutation tool

generates a set M={M1, M2, … Mn} of mutants of S. Each Mi contains one or more

syntactic changes, most of which will be faults and should be discovered by a good test

suite. Therefore, the original idea of mutation is to build a test suite that finds all the

faults injected on the mutants.

Syntactic changes are seeded by “mutation operators”. Suppose we have a program

with a sum function to add two integer numbers:

• Figure 1(a) shows the source code of the original program and of some mutants.

• Figure 1(b) presents the results obtained from executing some test cases on the

different program versions.

The test case corresponding to the test data (1, 1) produces different outputs on the

original program (whose output is correct) and on Mutant 1: thus, this test case has

found the fault introduced in the mutant, and it is said that the mutant is killed

(moreover, this test case is “good”). On the other side, since all test cases offer the same

output on the original program and on Mutant 4, it is said that Mutant 4 is alive.

Moreover, this mutant will never be killed by any test case, since variable b is

incremented after returning the result. Mutants like this one are called “functionally-

equivalent mutants”, and may be considered as noise in the result analysis step, since

they represent obstacles in knowing the quality of the test suite: they have a fault

(actually, a syntactic change) with respect to the original source code that cannot be

found though.

 4

(a) Code of some mutants

Version Code

Original

int sum(int a, int b) {

 return a + b;

}

Mutant 1

int sum(int a, int b) {

 return a - b;

}

Mutant 2

int sum(int a, int b) {

 return a * b;

}

Mutant 3

int sum(int a, int b) {

 return a / b;

}

Mutant 4

int sum(int a, int b) {

 return a + b++;

}

 Test data (a,b)

(1, 1) (0, 0) (-1, 0) (-1, -1)

P
ro
g
ra
m
 v
er
si
o
n
s Original 2 0 -1 -2

Mutant 1 0 0 -1 0

Mutant 2 1 0 0 1

Mutant 3 1 Error Error 1

Mutant 4 2 0 -1 -2

(b) Results with some test data

Figure 1. Code of some mutants and their results with some test data

In general, the process of mutation testing has three stages:

1) Mutant generation. By means of a tool, the tester generates a set of mutants.

Usually, each mutant contains a simple change wich is normally a fault.

Depending on the mutation operators used, the number of equivalent mutants

may vary, but can be around 20% of the total.

2) Test case execution. Also with a tool, the tester executes the test cases against

the mutants and the original program.

3) Result analysis. The tester evaluates the Mutation Score that the test suite

reaches on the program under test. The Mutation Score gives a measure of the

test suite quality. Its value depends on the number of mutants killed, the total

number of mutants and on the number of equivalent mutants (Figure 2). A test

suite is mutation-adequate for a program when it reaches 100% as mutation

score.

, where:

P : program under test

T :test suite

K : number of killed mutants

M : number of generated mutants

E : number of equivalent mutants

Figure 2. Mutation Score

 Figure 3 summarizes a possible testing process based on mutation: starting from

a program P and a test suite T, the tester executes T on order to find faults. If T finds

 5

faults on P, then P must be fixed until no errors are found. When T does not find any

fault, then the mutants of P can be generated. Test cases on T are executed against

mutants: note that, when a mutant is killed (this is, when its fault is discovered), no

more test cases should be executed against it for cost savings (ought to this, the square

in the figure is labeled as “Run T on each alive mutant”). There will also be some

ineffective test cases (this is, test cases which do not discover any faults, or which

discovers the same faults than others). If the Mutation Score threshold is reached, then

the testing can stop; otherwise, there are undiscovered faults which should be

discovered by new test cases, which must be added to the test suite. These new test

cases must be executed against P, the program under test, since maybe this one contains

faults in unexplored areas of its code. Note, moreover, an additional task named

“Remove equivalent mutants”. Actually, the detection of equivalent mutants is made by

hand and may require a huge time. Thus, maybe the Mutation Score threshold (one of

the stop conditions for the testing process; the other one is the non-discovering of faults

on P) could be decreased down to 80%.

Figure 3. A possible mutation testing process

2 Mutation types

Test cases can find the faults inserted in the mutants in several ways. First of all,

let’s remind that, in general, the structure of a test case consists in: (1) the execution of a

set of steps to put the SUT in the required, initial state; (2) execution of services on the

SUT to put it in the expected state; (3) comparison of the actual obtained state with the

 6

expected one. If the expected and the obtained states differ, then the test case has found

an error on the SUT.

Suppose the code in the left side of Figure 4 (it is the getType function, included in a

TriTyp class, and determines the type of a triangle depending on the lengths of its sides),

which is tested by the test cases in the right side. These ones are JUnit test cases. Each

one builds an instance of the class under test (TriTyp), executes a set of services on this

instance (setI, setJ, setK), try to lead the instance into a given state (call to getType) and,

finally, includes an oracle to determine whether the instance of the CUT has or has not

the expected behaviour: for example, the testEQUILATERAL test case checks whether

the TriTyp program says that a triangle instance with sides of lengths 5, 5 and 5 is, in

fact, an equilateral triangle.

/**
 * @return 1 if scalene ; 2 if isosceles ;
 * 3 if equilateral ; 4 if not a triangle
 */
publicvoid getType() {
 if (i == j) {
 trityp = trityp + 1;
 }
 if (i == k) {
 trityp = trityp + 2;
 }
 if (j == k) {
 trityp = trityp + 3;
 }

 if (i <= 0 || j <= 0 || k<= 0) {
 trityp = TriTyp. NOT_A_TRIANGLE;
 return;
 }
 if (trityp == 0) {

 if (i + j <= k || j + k<= i ||
 i + k<= j) {

 trityp = TriTyp. NOT_A_TRIANGLE;
 return;
 } else {
 trityp = TriTyp. SCALENE;
 return;
 }
 }
(*) if (trityp > 3) {
 trityp = TriTyp. EQUILATERAL;
 } elseif (trityp == 1 && i + j >k){
 trityp = TriTyp. ISOSCELES;
 } elseif (trityp == 2 && i + k>j) {
 trityp = TriTyp. ISOSCELES;
 } elseif (trityp == 3 && j + k>i) {
 trityp = TriTyp. ISOSCELES;
 } else {
 trityp = TriTyp. NOT_A_TRIANGLE;
 }
 }

import junit.framework.TestCase;

publicclass TriTypTest extends TestCase {

publicvoid testEQUILATERAL() {
TriTyp t= new TriTyp();
t.setI(5);
t.setJ(5);
t.setK(5);
t.getType();
assertTrue(t. trityp ==TriTyp. EQUILATERAL);

}

publicvoid testISOSCELES() {
 TriTyp t= new TriTyp();
 .setI(5);
 t.setJ(5);
 t.setK(8);
 t.getType();
 assertTrue(t. trityp ==TriTyp. ISOSCELES);
}

 publicvoid testSCALENE() {
 TriTyp t= new TriTyp();
 t.setI(4);
 t.setJ(5);
 t.setK(8);
 t.getType();
 assertTrue(t. trityp ==TriTyp. SCALENE);
}

publicvoid testNOTRIANGLE() {
 TriTyp t= new TriTyp();
 t.setI(4);
 t.setJ(5);
 t.setK(9);
 t.getType();
 assertTrue(t. trityp ==TriTyp. NOT_A_TRIANGLE);
}
}

Figure 4. A piece of code and some test cases

Suppose we change “>” by “==” on the line marked up with (*), and we leave it as

follows: if (trityp==3), which is the only branch in the function to decide about

equilateral triangles. Therefore, the testEQUILATERAL test case will evidence a

different behaviour on the original program and on the mutant, so killing it. In this case,

the test case has found the error in the mutant.

 7

In other mutation tools, such as MuJava, test cases are slightly different. The same

testEQUILATERAL test case would be as in Figure 5.

Public int testEQUILATERAL() {
TriTyp t= new TriTyp();
t.setI(5);
t.setJ(5);
t.setK(5);
return t.getType();

}

Figure 5. The testEQUILATERAL test case, in MuJava format

When the MuJava test case is executed on the original program, it returns 3 (the

value of the TriTyp.EQUILATERAL contant); when executed against the mutant, it

returns 4 (NOT_A_TRIANGLE). Thus, MuJava detects the fault and considers the

mutant as killed.

This way of detecting the faults is called Strong mutation. Strong mutation requires

the three RIP conditions to consider a test case kills a mutant:

• Reachability: the test case must reach the mutated statement.

• Infection: once the statement has been reached, the test case must cause an

erroneous state on the mutant.

• Propagation: the erroneous state must be propagated to the output. In this

way, the erroneous state will be observable from the test case’s oracle.

If the erroneous state is not propagated until the output, then the oracle will not

distinguish it and will consider the mutant as alive.

Actually, the detection of faults with JUnit-style oracles is a special type of strong

mutation called Functional Qualification: in this case, the tester uses the JUnit oracle

(assert and fail statements) for detecting the killed mutants. However, also the RIP

conditions are required for this.

Weak Mutation is another type of mutation which only requires the first two

conditions: in some place between the mutated statement and the program output, the

mutation execution tool compares the states of both original program and of the mutant.

If they differ, the mutant is killed; otherwise, is alive. There are several places where the

tool can check the states’ differences and, thus, there are several types of weak

mutation:

 8

• BB-Weak/1: Execution is stopped just after execution of the mutated

statement and the state of the mutated system is compared with the state of

the original system

• BB-Weak/n: Execution is stopped just after the execution of the mutated

statement if it is not inside a loop. If it is, execution is stopped after the

execution of the loop. At the point where the execution is stopped, the states

of the mutant and of the original system are compared

Recently, we have proposed Flexible Weak Mutation as a new technique for

applying mutation at system level. With this mutation type, an execution engines almost

continuously looks for differences between the original and the mutant systems.

Bacterio is the first tool supporting Flexible Weak Mutation, although it also

supports Strong Mutation, Weak Mutation and Functional Qualification.

3 Killing matrixes

Supposing a tool that executes all test cases against all the mutants, the final result

could be seen as a killing matrix. Let be P a program for which a mutation tool

generates 7 mutants. Figure 6 shows the possible Killing Matrix: cells containing “X”

denote that the corresponding test case has found the mutant in the row. tc6, for

example, has found the faults inserted on m3 to m7, whereas tc4 has not found any fault

and could be removed from the test suite.

Note, moreover, that tc3 kills a subset of mutants killed by tc6, and that tc2 kills the

same mutants that tc1 and tc5. Therefore, the original test suite, composed by 6 test

cases, could be reduced to a new test suite containing only 2 test cases.

 Test cases

 tc1 tc2 tc3 tc4 tc5 tc6

M
u
ta
n
ts

m1 X X

m2 X X X

m3 X X

m4 X X

m5 X X

m6 X X

m7 X

Figure 6. Killing matrix for a supposed program and a supposed test suite

Obviously, the construction of the complete killing matrix requires the execution of

all the test cases against all the mutants, what may require more execution time that the

 9

execution only on those mutants remaining alive (which is the proposal depicted in

Figure 3). However, some times the complete execution can be interesting in order to do

further reductions of the test suite, such as in this example: when the system evolves in

the future, only 2*7=14 executions will be required for a complete regression test.

When killed mutants are no longer considered by the next test cases, the killing

matrix can be filled-in in two ways more at least: by rows or by columns.

If we fill-in the matrix by rows, then tc1 is executed against m1. As this mutant is

killed, then m1 is removed from the suite and the process continues executing tc1 on

m2, which is also killed. Then, tc1 is executed against m3, which remains alive and

forces the execution of tc2 against m3. With this process, the killing matrix remains as

in Figure 7. The test suite will consist of tc1, tc2, tc3 and tc6. Coloured cells represent

executions that are not performed since correspond to previously-killed mutants.

 Test cases

 tc1 tc2 tc3 tc4 tc5 tc6

M
u
ta
n
ts

m1 X

m2 X

m3 X

m4 X

m5 X

m6 X

m7 X

Figure 7. Killing matrix filled-in by rows

If the matrix is filled-in by columns, then each test case is executed against all the

mutants remaining alive: tc1 against m1 (which is removed since it is killed), tc1 against

m2, etc. (Figure 8), but the final result is the same.

 Test cases

 tc1 tc2 tc3 tc4 tc5 tc6

M
u
ta
n
ts

m1 X

m2 X

m3 X

m4 X

m5 X

m6 X

m7 X

Figure 8. Killing matrix filled-in by columns

 10

Chapter II. An overview of Bacterio

1 Bacterio in a nutshell

Bacterio is a tool for testing Java applications based on mutation. Mutation is applied

at bytecode level.

Bacterio supports Strong mutation, BB-Weak/1, BB-Weak/N, Functional

qualification and Flexible weak mutation.

The tool has been developed by Pedro Reales and Macario Polo (Alarcos Research

Group, University of Castilla-La Mancha, Spain).

This document explains how to test a system by means of Bacterio. To illustrate it,

we will use a small Sudoku Solver system, which runs on a single, local machine. You

can download it from here.

2 Licensing

Research and education institutions can freely download and use Bacterio: in this

case, the tool is licensed only for research and educational purposes.

Any other kind of use requires the acquisition of a license. Please, contact

http://www.alarcosqualitycenter.com/index.php/productos/bacterio to acquire a license.

3 Third party software.

Bacterio uses the following third-party software:

3.1 ASM.

ASM is an all purpose Java bytecode manipulation and analysis framework. It can

be used to modify existing classes or dynamically generate classes, directly in binary

form. Provided common transformations and analysis algorithms allow to easily

assemble custom complex transformations and code analysis tools. ASM offer similar

functionality as other bytecode frameworks, but it is focused on simplicity of use and

performance. Because it was designed and implemented to be as small and as fast as

possible, it makes it very attractive for using in dynamic systems.

Copyright (c) 2000-2005 INRIA, France Telecom All r ights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the follo wing conditions are
met:
 1. Redistributions of source code must retain the above copyright

 11

notice, this list of conditions and the following d isclaimer.
2. Redistributions in binary form must reproduce th e above copyright
notice, this list of conditions and the following d isclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holders nor th e names of its
contributors may be used to endorse or promote prod ucts derived from
this software without specific prior written permis sion.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCL UDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILI TY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SH ALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, IND IRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LI ABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILIT Y OF SUCH DAMAGE.

Figure 9. ASM Project License

3.2 JODE: Java Optimize and Decompile Environment

JODE is a java package containing a decompiler and an optimizer for java. This

package is freely available under the GNU GPL. New: The bytecode package and the

core decompiler is now under GNU Lesser General Public License, so you can integrate

it in your project.

The decompiler reads in class files and produces something similar to the original

java file. Of course this can't be perfect: There is no way to produce the comments or

the names of local variables (except when compiled with debugging).

JODE is Copyright © 1998-2000 by Jochen Hoenicke.
This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of t he License, or (at

your option) any later version.

You can redistribute some of the packages under the terms of the of

the GNU Lesser General Public License as published by the Free

Software Foundation. See the copyright headers in t he source code.

This program is distributed in the hope that it wil l be useful,
but without any warranty; without even the implied warranty
of merchantability or fitness for a particular purpose. See the GNU
General Public License for more details.

Figure 10. JODE license

3.3 A DOOM image

In order to animate the test case execution window, Bacterio makes use of an

animated gif from famous the DOOM2 computer game, which is under GNU GPL

license.

 12

4 The testing process with Bacterio: an overview

Basically, the testing process with Bacterio is quite similar to that described on

Chapter 1: in fact, it consists of a step of mutant generation, test case execution and

result analysis.

An important difference of Bacterio with respect to other mutation tools is that

Bacterio generates in just a single step all the mutants for all the classes in the SUT.

Thus, if a system is composed by four classes A, B, C and D, Bacterio builds mutants

for all of them. Suppose it builds P mutants from A, Q from B, R from C and S from D.

Left side of Figure 11 shows these sets of mutants, grouped by the corresponding

original class; right side shows the actual set of mutants that Bacterio considers: this is,

all the class mutants together.

Original system={A, B, C, D}

MA={A1, A2, … AP}

MB={B1, B2, … BQ},

MC={C1, C2, … CR}
MD={D1, D2, … DS}

M={A1, A2, … AP,B1, B2, … BQ, C1, C2, … CR, D1, D2, … DS}

Figure 11. Mutants generated by Bacterio for a supposed application

As Bacterio is focused on the testing of complete systems, another difference is

also in the way of composing the mutated versions. Other tools put their focus on the

class under test, whilst Bacterio puts it on the complete system under test. Thus, what

Bacterio makes is to build mutant versions of the complete system: each mutated

version contains at least a mutant class, although may have more. The order of a mutant

references the number of faults it contains: Figure 12 illustrates this idea: 1
st
-order

mutants contain one fault each; 2
nd
-order, two faults, etc.

Original system={A, B, C, D}

1
st
-order mutants 2

nd
-order mutants 3

rd
-order mutants 4

th
-order mutants

M1={A1, B, C, D}

M2={A2, B, C, D}
…

Mj={A, BQ, C, D)
…

M1={A1, B1, C, D}

M2={A1, B2, C, D}
…

Mj={A, B4, CR, D)

…

M1={A1, B1, C1, D}

M2={A1, B1, C2, D}

…

M1={A1, B1, C1, D1}

M2={A1, B1, C1, D2}

…

Figure 12. Some mutants of different orders

At first glance, dealing with high-order mutants decreases the costs of test case

execution (since there are less mutants), but it is relatively easy to discover just one of

the n faults inserted in the system.

The testing process with Bacterio is summarized in the following subsections.

 13

5 Mutant generation.

In this step, Bacterio generates faulty copies of the classes composing the

application under test. Figure 13 represents a system composed of Z classes. After the

first step, Bacterio gets a set of mutants for all of them.

Figure 13. Generation of class mutants in Bacterio

6 Mutant combination for producing mutant versions.

In a previous version, Bacterio built so many copies of the SUT as mutants there

were. Due to the high space requirements of this approach, we modified it and, now, it

loads at runtime the corresponding mutants of each version.

That primitive way of mounting the mutant versions is however valid to

exemplify the results: consider that it works as in Figure 14, where 2
nd
-order mutant

versions are mounted: version 1 contains a class mutant from A and another one from Z,

whereas B, C, etc. are copies of the original ones; version 2 would contain any other two

mutant classes, etc.

 14

Figure 14. An schema of how Bacterio produces mutant versions

7 Test case execution.

Bacterio may execute different types of test cases and in several ways. It takes the

test suite and launches its test cases to the original application and to the mutant

versions. Depending on the mutation type selected (strong, weak, flexible weak or

functional qualification), the results may have differences. Moreover, Bacterio also

allows the execution of functional tests (interacting with the frames composing the

original application): the events launched by the tester to the SUT can be saved and,

later, reproduced on each mutant to find faults.

Figure 15 illustrates this double possibility.

Figure 15. Test case execution

1 Initial execution and configuration

We have executed Bacterio with no problems on Windows, Linux and Mac OS

systems. The examples in this

For this section, we will use the SudokuSolver system which, in our computer, is

saved on a SudokuSolver folder

shown on Figure 16. Note the source code is under the

code is under bin. The remaining subfolders preserve the package structure of the

application.

Note there is also a tests

cases.

Figure 16

Bacterio is executed just launching the Bacterio.jar file. The main window of the

tool appears (Figure 17).

15

Chapter III. A first execution

Initial execution and configuration

We have executed Bacterio with no problems on Windows, Linux and Mac OS

systems. The examples in this chapter are executed on a MacBook Pro with Mac OS X.

For this section, we will use the SudokuSolver system which, in our computer, is

folder on the desktop. The application has the folder structure

. Note the source code is under the src folder, whereas the compiled

. The remaining subfolders preserve the package structure of the

tests package containing a Test1 class, which contains JUnit test

16. Folder structure of the SudokuSolver project

Bacterio is executed just launching the Bacterio.jar file. The main window of the

A first execution

We have executed Bacterio with no problems on Windows, Linux and Mac OS

are executed on a MacBook Pro with Mac OS X.

For this section, we will use the SudokuSolver system which, in our computer, is

on the desktop. The application has the folder structure

folder, whereas the compiled

. The remaining subfolders preserve the package structure of the

class, which contains JUnit test

Bacterio is executed just launching the Bacterio.jar file. The main window of the

2 Configuration of folders

Once we are in this window, the first to do is to configure the tool properly. For

this, select Configuration in the menu and the

Figure

We’ll establish the Version folder

(for example, on the desktop). The

containing the compiled test cases

(Figure 16): the complete name of the

Tests cases folder will be bin

16

Figure 17. Main screen of Bacterio

of folders

Once we are in this window, the first to do is to configure the tool properly. For

in the menu and the window in Figure 18 appears.

Figure 18. Configuration dialog before our setup

Version folder to a version folder we must create in any place

(for example, on the desktop). The Test case folder must point to the root

the compiled test cases. In this example, test cases are in bin/tests/Test1.class

): the complete name of the Test1.class class is tests.Test1.class.

bin, and the configuration remains as in Figure

Once we are in this window, the first to do is to configure the tool properly. For

appears.

folder we must create in any place

must point to the root folder

/tests/Test1.class

tests.Test1.class.Thus, the

Figure 19.

Figure

As you see, there is a

fault introduced in a mutant may lead the execution into an infinite loop

consider a mutant as killed when it spends too much time

configure the value of that field.

Original
publicvoid test1() {
 for (int i=0; i<100; i++)
 System. out.println(i);
}

Figure

 The test cases in the

executed with Functional Qualification

and let’s select Functional Qualification

17

Figure 19. Configuration for this example

As you see, there is a Timeout field in the configuration dialog. Sometimes, the

fault introduced in a mutant may lead the execution into an infinite loop

consider a mutant as killed when it spends too much time under execution, you can

configure the value of that field.

Original Mutant
test1() {

i=0; i<100; i++)
.println(i);

publicvoid test1() {
 for (int i=0; i<100; i++)
 System. out.println(i--); (*)
}

Figure 20. The mutant produces an infinite loop

The test cases in the Test1.class file are JUnit test cases, and are suitable to be

Functional Qualification. Then, let’s press the Advanced options

Functional Qualification as our Kind of mutation (Figure

field in the configuration dialog. Sometimes, the

fault introduced in a mutant may lead the execution into an infinite loop (Figure 20). To

under execution, you can

(*)

file are JUnit test cases, and are suitable to be

Advanced options button

Figure 21).

At this point, the tool is configured, thus let’s press the

configuration (if the Cancel

undone).

3 Mutant generation step

To generate mutants from the system under test, we select

in the menu bar of Figure 17

18

Figure 21. Advanced options

this point, the tool is configured, thus let’s press the OK button to save the

Cancel button is clicked, all the configuration changes would be

Mutant generation step

To generate mutants from the system under test, we select Mutation, Generation

17, so the window in Figure 22 appears.

button to save the

changes would be

Mutation, Generation

Figure

3.1 Selecting the elements to mutate

Now, we must select the location of the

required files are on /Users/Maco/Desktop/SudokuSolver/bin

pressing the button labelled “

several folders, requires libraries, etc., they should be added also pressing the “

button. Then, the tester must select th

mutated. For this, s/he selects the location in the list of the left side and passes it to the

right side pressing the “>>” button (right side of

Figure 23. Selecting the SUT location (left) and selection of the location of the

19

Figure 22. Window for mutant generation

Selecting the elements to mutate

Now, we must select the location of the system under test. In our case, all the

/Users/Maco/Desktop/SudokuSolver/bin. We can add this path by

pressing the button labelled “+” (left side of Figure 23). If the system is dispersed on

several folders, requires libraries, etc., they should be added also pressing the “

button. Then, the tester must select the folder containing the .class files which will be

mutated. For this, s/he selects the location in the list of the left side and passes it to the

” button (right side of Figure 23).

. Selecting the SUT location (left) and selection of the location of the

mutated (right)

system under test. In our case, all the

. We can add this path by

). If the system is dispersed on

several folders, requires libraries, etc., they should be added also pressing the “+”

files which will be

mutated. For this, s/he selects the location in the list of the left side and passes it to the

. Selecting the SUT location (left) and selection of the location of the .class files to be

 20

Note that, the left list (Figure 23-left) should include the elements that compose

the classpath necessary to run the system correctly (.jar files and folders which contain

.class files).

3.2 Selection of mutation operators

Now, the tester needs to select the mutation operators to be applied. Bacterio

implements 10 mutation operators:

• Five (Swap, Parameter increment, Parameter decrement, Nullify and Throw

exceptions) proceed from or are inspired by the work of Ghosh and Mathur,

who define a set of interface mutation operators for testing components from a

black-box point of view:

o Swap interchanges, in an operation, the values of two parameters of

compatible types, by means of a modification of the operation

signature: thus, if a class has the operation foo(int a, int b, int c),

mutants will be produced interchanging a, b and c: for example, (b,

a, c) or (c, a, b).

o Parameter increment (INC) and decrement (DEC) proceed from the

Twiddle operator. They modify the value of numeric parameters,

respectively incrementing or decrementing the value in one when the

method is entered.

o Nullifier sets the value of an object parameter to null.

o Throw exceptions is inspired by the Exception coverage criterion

defined in the referenced work: “A test set is adequate with respect to

exception coverage if it leads to 100% exception coverage”. If a

method throws n exceptions, this operator produces n mutants, each

one replacing the original code of the method by a single statement

which throws each of the n possible exceptions.

• The remaining five operators introduce small changes in the structure of the

actual method body: AOR (arithmetic operator replacement), ROR (relational

operator replacement), ABS (absolute value insertion), LCR (logical connector

operator) and UOI (unary operator insertion) are classic mutation operators

and are among the most significant and valuable operators, according to

several studies on selective mutation.

 21

Table 1 shows the changes introduced by these operators in a small fragment of

Java Code. In order to make the example more illustrative, the table shows the Java

source code translation corresponding to the actual changes introduced in the bytecode

mutants.

 22

Original code

int div(int a, int b) throws NaNException, ByZeroException {

 if (a==0 && b==0) throw new NANException();

 if (b==0) throw new ByZeroException();

 return a/b;

}

Operator Changes introduced

Swap int div(int b, int a)
INC int div(int a, int b) throws… {

 a++;
 if …

 if …

 return a/b;

}

int div(int a, int b) throws … {

b++;
if …

if …

return a/b;

}

DEC int div(int a, int b) throws … {

 a--;
 if …

 if …

 return a/b;

}

int div(int a, int b) throws … {

b--;
if …

if …

return a/b;

}

Nullifier int div(int a, int b) throws … {

 a=null;
 if …

 if …

 return a/b;

}

int div(int a, int b) throws … {

b=null; /* Not applicable to int type.

if … // It is just an example.

if … */
return a/b;

}

Throw

exceptions

int div(int a, int b) throws … {

 throw new NaNException();
}

nt div(int a, int b) throws … {

throw new ByZeroException ();
}

AOR int div(int a, int b) throws…{

 if …

 if …

 return a+b;
}

int div(int a, int b) throws… {

 if …

 if …

 return a-b;
}

int div(int a, int b) throws… {

 if …

 if …

 return a*b;
}

ROR int div(int a, int b) throws … {

 if (a==0 || b==0) throw new NANException();

 …

}

ABS int div(int a, int b) throws … {

 if (Math.abs(a)==0 && b==0) throw …
 if (b==0) throw new ByZeroException();

 return a/b;

}

int div(int a, int b) throws … {

if (a==0 &&Math.abs(b)==0) throw …
if (b==0) throw new ByZeroException();

return a/b;

}

 …

UOI int div(int a, int b) throws …{

 if (-a==0 && b==0) throw …
 if (b==0) throw …

 return a/b;

}

int div(int a, int b) throws …{

 if (a==0 &&-b==0) throw …
 if (b==0) throw …

 return a/b;

}

 …

LCR int div(int a, int b) throws NaNException, ByZeroException {

 if (a==0 ║ b==0) throw new NANException();
 if (b==0) throw new ByZeroException();

 return a/b;

}

Table 1. Source code representation of some changes introduced in a small piece of bytecode

For this example we’ll select all of them excepting LCR (Figure 24).

Figure

3.3 Selecting options to generate versions

Suppose we have the system in

C, D which respectively have produced 5, 4, 6 and 3 mutants.

Figure 25. A system composed by four classes and its mutants

 As Figure 26 shows, t

applying two mutation techniques:

 The High Order Mutation

version. This technique can be applied

three Each choice and Pair wise

class, method or with the same mutation

different orders which can be determine to indicate how many mutants combine in each

version.

The Mutant sampling

percentage of the total number of versions, which are randomly selected. Some studies

have shown that the Mutation Score got on a small random percentage of mutants is

almost equivalent to the Mutat

23

Figure 24. Selection of mutation operators

ecting options to generate versions

Suppose we have the system in Figure 25. It is composed by four classes

which respectively have produced 5, 4, 6 and 3 mutants.

Original system={A, B, C, D}

Mutants={A1, A2, A3, A4, A5,

 B1, B2, B3, B4,

 C1, C2, C3, C4, C5, C6,

 D1, D2, D3}

. A system composed by four classes and its mutants

shows, these class mutants can be combined into mutated versions

applying two mutation techniques: High Order Mutation and Mutant S

High Order Mutation technique combines more than one mutant in each

version. This technique can be applied with several algorithms (One fault/version

Pair wise) and restrictions (do not joint mutants in the same

same mutation operator) to combine errors and with

which can be determine to indicate how many mutants combine in each

Mutant sampling bar appearing beneath allows to mount and to test only a

percentage of the total number of versions, which are randomly selected. Some studies

have shown that the Mutation Score got on a small random percentage of mutants is

ost equivalent to the Mutation Score on the total number of mutants.

. It is composed by four classes A, B,

hese class mutants can be combined into mutated versions

Mutant Sampling.

technique combines more than one mutant in each

One fault/version,

do not joint mutants in the same

) to combine errors and with

which can be determine to indicate how many mutants combine in each

bar appearing beneath allows to mount and to test only a

percentage of the total number of versions, which are randomly selected. Some studies

have shown that the Mutation Score got on a small random percentage of mutants is

ion Score on the total number of mutants.

Figure 26. Algorithms and options

 Depending on the algorithm, the number and properties of the mutated versions

will be different. In all cases, the mutated

• With One fault per version

mutated class and three original classes

example: {A1, B, C, D},

• With Each Choice,

the selected order)

version. The selection of the mutants

starting at the beginning of the list of mutants.

• With Each Choice first

(being n the selected order). Each mutant will be introduce

mutated version. The selection of the mutants to build the versions use

two sequences, fro

selecting each time a mutant from a

• With Random Each Choice,

(being n the selected order). Each mutant will be

mutated version. The selection of the mutants to build the versions is

random.

• With Pair wise, each pair of mutant classes proceeding from different

classes will be introduce

pair tables: (A, B), (A, C), (A, D), (B, C), (B, D)

example, contains 12 pairs:

24

and options for class mutants combination into mutated versions

Depending on the algorithm, the number and properties of the mutated versions

all cases, the mutated versions will have four classes, but:

One fault per version, each mutated version will contain one

and three original classes. Versions in this category are, for

, B, C, D}, {A5, B, C, D}, {A, B3, C, D},{A, B, C6, D}, etc.

Choice, each mutated version will contain n mutants

). Each mutant will be introduced in at least

version. The selection of the mutants to build the versions is sequential,

he beginning of the list of mutants.

Each Choice first-last, each mutated version will contain

the selected order). Each mutant will be introduced

mutated version. The selection of the mutants to build the versions use

rom the beginning and from the end of the lists of mutants,

cting each time a mutant from a different sequence.

Random Each Choice, each mutated version will contain n mutants

(being n the selected order). Each mutant will be introduced

mutated version. The selection of the mutants to build the versions is

each pair of mutant classes proceeding from different

classes will be introduced in at least a mutated version: consider there are 6

(A, B), (A, C), (A, D), (B, C), (B, D) and (C, D). Table

example, contains 12 pairs: (B1, D1), (B1, D2), (B1, D3), (B2, D1), (B

for class mutants combination into mutated versions

Depending on the algorithm, the number and properties of the mutated versions

will have four classes, but:

, each mutated version will contain one

. Versions in this category are, for

etc.

mutants (being n

st a mutated

to build the versions is sequential,

each mutated version will contain n mutants

 in at least a

mutated version. The selection of the mutants to build the versions uses

m the end of the lists of mutants,

each mutated version will contain n mutants

 in at least one

mutated version. The selection of the mutants to build the versions is

each pair of mutant classes proceeding from different

d in at least a mutated version: consider there are 6

Table (B, D), for

), (B2, D2), (B2,

D3), (B3, D1), (B3, D2

Pair wise is to generate versions visiting all the pairs in all the pair tables.

Data on Figure 27 represent 30 possible combinations of the mutant

classes, which correspond to 30 possible mutant versions. In this case, they

have been generated with

mutant version may

1 {A1,B1,C1,D1} 7 {A2,B1,C2,D3}

2 {A1,B1,C6,D1} 8 {A2,B2,C1,D1}

3 {A1,B2,C2,D2} 9 {A2,B3,C4,D2}

4 {A1,B2,C5,D2} 10 {A2,B3,C5,D3}

5 {A1,B3,C3,D3} 11 {A2,B3,C6,D3}

6 {A1,B4,C4,D1} 12 {A2,B4,C3,D1}

Figure 27. Possible combinations with

3.4 Generation of mutant

For this example, we’ll leave the options

sampling was reduced to 25%)

24), we can press the Get versions

selection of the classes and methods

mutation the tests package, since it has no business code, but only test cases that must

not be mutated.

Figure

We press Ok and, after some moments, Bacterio says that it has finished of

applying the last mutation operator (

25

2), (B3, D2), (B4, D1), (B4, D2) and (B4, D3). The idea behind

Pair wise is to generate versions visiting all the pairs in all the pair tables.

represent 30 possible combinations of the mutant

classes, which correspond to 30 possible mutant versions. In this case, they

have been generated with Order=4 (see Figure 26), what means that each

mutant version may have up to 4 mutant classes.

{A2,B1,C2,D3} 13 {A3,B1,C3,D2} 19 {A4,B1,C4,D2}

{A2,B2,C1,D1} 14 {A3,B2,C4,D3} 20 {A4,B1,C5,D1}

{A2,B3,C4,D2} 15 {A3,B3,C2,D1} 21 {A4,B1,C6,D1}

{A2,B3,C5,D3} 16 {A3,B4,C1,D2} 22 {A4,B2,C3,D1}

{A2,B3,C6,D3} 17 {A3,B4,C5,D1} 23 {A4,B3,C1,D3}

{A2,B4,C3,D1} 18 {A3,B4,C6,D1} 24 {A4,B4,C2,D3}

. Possible combinations with Pair wise and Order=4

mutant classes and mutant versions

For this example, we’ll leave the options shown in Figure 26 (note the

was reduced to 25%). With all the mutation operators already selected (

Get versions button. Bacterio allows us now to do a finest

and methods to mutate (Figure 28): we’ll leave out of the

package, since it has no business code, but only test cases that must

Figure 28. A fine selection of the classes to mutate

and, after some moments, Bacterio says that it has finished of

applying the last mutation operator (Figure 29).

The idea behind

Pair wise is to generate versions visiting all the pairs in all the pair tables.

represent 30 possible combinations of the mutant

classes, which correspond to 30 possible mutant versions. In this case, they

, what means that each

25 {A5,B1,C3,D1}

26 {A5,B1,C4,D1}

27 {A5,B1,C5,D1}

28 {A5,B2,C6,D2}

29 {A5,B3,C1,D3}

30 {A5,B4,C2,D1}

versions

(note the Mutant

operators already selected (Figure

button. Bacterio allows us now to do a finest

): we’ll leave out of the

package, since it has no business code, but only test cases that must

and, after some moments, Bacterio says that it has finished of

Figure 29

 Now, we can press the

introduced by Bacterio and

Now, we press the Mount versions

the class mutants into mutant versions. Since the selected algorithm was

fault/version, Bacterio produces so many versions as mutants

Versions folder specified in the configuration d

this case. For this example

sampling, the tool generates

One fault/mutant algorithm was selected

Bacterio creates an empty folder for e

executed, Bacterio will leave on them some data of the execution.

26

29. The generation of class mutants has finished

Now, we can press the Show results button to see the locations of the changes

introduced by Bacterio and what operator has been applied (Figure 30).

Figure 30. Location of the mutations

Mount versions button in order to leave Bacterio to combine

the class mutants into mutant versions. Since the selected algorithm was

, Bacterio produces so many versions as mutants, which are saved in the

specified in the configuration dialog (Figure 19): Desktop/versions

 there are 2,199 mutants. As we selected 25% of

tool generates 550 mutant versions randomly selected (Figure

algorithm was selected, each version holds a mutant class.

Bacterio creates an empty folder for each version (Figure 32). Later, when test cases are

executed, Bacterio will leave on them some data of the execution.

button to see the locations of the changes

button in order to leave Bacterio to combine

the class mutants into mutant versions. Since the selected algorithm was One

, which are saved in the

Desktop/versions in

. As we selected 25% of Mutant

Figure 31). As the

a mutant class. Also,

). Later, when test cases are

Figure

Figure 32. Bacterio creates a folder for saving the results of each version

4 Test cases execution

At this moment, we have all we require to execute test cases against the original

and the mutants:

• We have mutant versions of the system.

• We have test cases in

In order to execute the test cases saved in

Execution on the menu bar of the main screen (

appears.

27

Figure 31. Location of the mutant versions

. Bacterio creates a folder for saving the results of each version

Test cases execution

At this moment, we have all we require to execute test cases against the original

mutant versions of the system.

We have test cases in tests/Test1.class.

In order to execute the test cases saved in Test1.class, we select Mutation,

on the menu bar of the main screen (Figure 17). The window in

. Bacterio creates a folder for saving the results of each version

At this moment, we have all we require to execute test cases against the original

Mutation,

The window in Figure 33

 The first thing to do now is to load the mutant versions. For this, we press the

Load button on the right side of the w

(Figure 34). This list is loaded because, in the configuration window (

specified that the versions would be save

28

Figure 33. Mutant execution window

The first thing to do now is to load the mutant versions. For this, we press the

button on the right side of the window and the Alive versions list is filled

). This list is loaded because, in the configuration window (Figure

specified that the versions would be saved on Desktop/versions.

The first thing to do now is to load the mutant versions. For this, we press the

list is filled-in

Figure 19), we

Figure 34. Bacterio loads and shows the alive versions (currently, none is killed)

 Now, we select the versions we are interested in testing, which will be all of

them. Then, we press the Select all

Bacterio shows now a small dialog

test suites saved on the Tests cases folder

Figure 19.

Figure

 We leave the options as presented

cases against the mutants (Figure

1) In the first time, Bacterio executes twice the test cases against the

original system. In this way, Bacterio is capable of detecting areas in

the SUT whose behavior may depend on chance, wh

and will not be taken into account during mutant execution.

2) Then, Bacterio launches the test cases against the mutant versions.

29

. Bacterio loads and shows the alive versions (currently, none is killed)

Now, we select the versions we are interested in testing, which will be all of

Select all button and, then, the Execute mutants

Bacterio shows now a small dialog (Figure 35) to select the test cases contained in

Tests cases folder we specified in the configuration window of

Figure 35. Selection of the test cases to execute

options as presented and press the Ok button to execute the test

Figure 36):

In the first time, Bacterio executes twice the test cases against the

system. In this way, Bacterio is capable of detecting areas in

the SUT whose behavior may depend on chance, which are marked

and will not be taken into account during mutant execution.

Then, Bacterio launches the test cases against the mutant versions.

. Bacterio loads and shows the alive versions (currently, none is killed)

Now, we select the versions we are interested in testing, which will be all of

Execute mutants button.

to select the test cases contained in the

we specified in the configuration window of

button to execute the test

In the first time, Bacterio executes twice the test cases against the

system. In this way, Bacterio is capable of detecting areas in

ich are marked

and will not be taken into account during mutant execution.

Then, Bacterio launches the test cases against the mutant versions.

Figure 36

5 Result analysis

When all test cases have been executed

like that in Figure 37. This windows shows relative results of the versions executed (for

example, if we would generate 100 versions but we only execute 50, the results

be calculated taking into account only the 50 executed versions, thus if the test

kill the 50 versions this windows would show

complete mutation process we would obtain 50%

window, Figure 33, after this window is closed

Figure

30

36. Bacterio, trying to execute and kill mutants

cases have been executed, Bacterio shows the results in

This windows shows relative results of the versions executed (for

generate 100 versions but we only execute 50, the results

taking into account only the 50 executed versions, thus if the test

windows would show 100% of mutation score, but for the

process we would obtain 50%, which is shown in the execution

, after this window is closed).

Figure 37. Results of the execution of the test cases

, Bacterio shows the results in a window

This windows shows relative results of the versions executed (for

generate 100 versions but we only execute 50, the results would

taking into account only the 50 executed versions, thus if the test would

100% of mutation score, but for the

in the execution

 31

 That window reports on:

1) In Figure 38, the total number of killed versions with respect to the number

of versions executed, as well as the number of mutants proceeding from

each mutation operator.

Figure 38. Total number of killed

2) In Figure 39, the percentages of killed versions.

Figure 39. Percentage of killed

3) In Figure 40, the killing matrix: this is, what test cases have killed what

versions:

a. Killed mutants are marked with X (for example, version200 is killed

by the testGoForward test case).

b. Killed mutants by Timeout (Figure 18) are marked with X(T), such

as version166.

c. Alive mutants that, furthermore, have not been traversed by test

cases, have no mark (version28, for example).

d. With respect to other mutation tools, Bacterio includes a useful

novelty: covered mutants remaining alive (this is, mutants whose

mutated statement has been traversed by the test case, but with no

discovering the change) are marked with “O”. This is the case of

version167.

 32

Figure 40. Killing matrix

 In the previous figure, version200 was killed by testGoForward and there is no

mark under testGoBack: with the execution algorithm we left selected as default

(Versions oriented, Figure 35), if a test case kills a version, then no more test cases are

executed against it (remind the Killing matrix section in Chapter I). Therefore, the

Versions oriented test case execution algorithm fills-in the killing matrix by rows.

4) In Figure 41, the times of execution of each test case against each version.

Figure 41. Execution time matrix

5) Finally (Figure 42), it shows a summary of the results.

Figure 42. Summary of results

 Additionally, when we close the results dialog and return to the Execution

window (Figure 33), Bacterio updates its data: now, it reports (Figure 43) about the

“completely alive” versions (those whose mutated statement have not been traversed by

 33

test cases), the alive but covered versions, the killed versions, the equivalent versions

marked by the tester.

Figure 43. The execution window, updated with new information

 Also, the information with the score achieved with all generated versions is

updated (Figure 44).

Figure 44. Score muttion matrix with global results.

5.1 Random test cases

Some times, depending of the domain of the system under test, the test cases and

the Bacterio configuration, Bacterio detects chance in the outputs of the original system.

For example, when some values are randomly calculated or generated in the system, and

they are considered part of the output or take effect in the output, like dice results.

Chance has a dramatic effect in the mutants results, because all the mutants would be

killed by a test case that produce a random output, because the output will be almost

always different, thus all the mutants will produce a different output than the output of

the original system and they will be killed.

Bacterio detects this randomness executing the original version twice, an applies

a special treatment to the random outputs, discarding the random parts of the outputs.

However, the random test cases suppose a risk and can produce deviations in the

mutation scores. Thus, in addition to apply the special treatment, Bacterio calculates the

risk of the random test cases detected and before the execution of the tests, Bacterio

asks to the user if the test should be run or not with a window like Figure 46.

Suppose that we create a random test case, in the example testRandom, and we

execute it (Figure 45).

 After Bacterio executes the original system, the window of

In this window there are four kinds of risk.

1. Low risk: Less than 5% of the output of the system is random, so this

is a very low risk and thanks to the special treatment of Bacterio, to

execute the test is safety enough.

2. Acceptable risk: Between 5% and 10% of the output of th

random, so this risk is acceptable and thanks to the special treatment

of Bacterio, the mutation scores will not be affected.

34

Figure 45. Executing a random test

Figure 46. Randomness found window

After Bacterio executes the original system, the window of Figure

are four kinds of risk.

Low risk: Less than 5% of the output of the system is random, so this

is a very low risk and thanks to the special treatment of Bacterio, to

execute the test is safety enough.

Acceptable risk: Between 5% and 10% of the output of th

random, so this risk is acceptable and thanks to the special treatment

of Bacterio, the mutation scores will not be affected.

Figure 46 appears.

Low risk: Less than 5% of the output of the system is random, so this

is a very low risk and thanks to the special treatment of Bacterio, to

Acceptable risk: Between 5% and 10% of the output of the system is

random, so this risk is acceptable and thanks to the special treatment

 35

3. High risk: Between 10% and 50% of the output of the system is

random, so this risk is high and, even with the special treatment of

Bacterio, the mutation scores can be affected.

4. No acceptable risk: More than 50% of the output of the system is

random, so this risk is not acceptable and, even with the special

treatment of Bacterio, the mutation scores will be affected.

Thus, after to study the possible risks, the tester can deselect those tests desired

and they will not executed by Bacterio.

5.2 Enriching the test suite with more test cases

Since we are only killing 37.81% of mutants, we need to add new test cases to

the test suite, in order to reach a higher mutation score. In particular, we’ll put our focus

on those versions whose mutations have not been traversed by test cases such as

version91, version92, version93 and version94 in Figure 43.

In order to write a test case to kill version91 (and, likely, other versions), we can

decompile version91 to inspect its source code and see the mutation done. Bacterio

makes this thanks to the JODE Java decompiler (Chapter II, section 3.2). The resulting

source code is not exactly the same written by the programmer, but can help the tester to

define a test that could kill the mutant. Then, we locate version91 in the left-side list of

Figure 43 and make double click on it. Bacterio opens a window (Figure 47) which

show the source code of the original version (Figure 47-left) and the mutated version

(Figure 47-right) and highlights the mutated statement: the mutation operator has

changed > by <= in the validar function of the JTFCasilla class.

Figure 47. Source code of

The original conditional statement checks whether the value in a cell of the

sudoku is between 1 and 9 in order to validate

the user can only insert a number between 1

mutated condition which do not allows numbers lower

a test case that could execute that part of code with a

will produce a different behavior of t

This new test case can be designed as a new test method in the same class that

the other tests or in a new test class, but the new

classpath defined in the configuration window (

When a new test case has been added to the test suite, in the example

testFiveInput test case, it can be execute

36

. Source code of the original (left) and of the mutant (right)

The original conditional statement checks whether the value in a cell of the

1 and 9 in order to validate an input to the system, what means that

the user can only insert a number between 1 and 9. However, the mutated version has a

mutated condition which do not allows numbers lower 10. Thus the tester should design

a test case that could execute that part of code with a 5 in the input for example

will produce a different behavior of the system.

case can be designed as a new test method in the same class that

the other tests or in a new test class, but the new .class files created must be in the same

classpath defined in the configuration window (Figure 19).

When a new test case has been added to the test suite, in the example

test case, it can be executed with Bacterio. In order to execute this new

the original (left) and of the mutant (right)

The original conditional statement checks whether the value in a cell of the

, what means that

However, the mutated version has a

Thus the tester should design

for example, which

case can be designed as a new test method in the same class that

files created must be in the same

When a new test case has been added to the test suite, in the example

In order to execute this new

test case, only the lived versions must be selected (

to execute again the dead versions.

Then, we execute the sel

new test case can be selected. Only this test is selected because the other two test case

have been already executed. The

test case. These results are relative to

case have kill 5 versions that were alive

37

versions must be selected (Figure 48), because there is not sense

execute again the dead versions.

Figure 48. Alive mutants selected

we execute the selected versions normally. Figure 49 shows that

be selected. Only this test is selected because the other two test case

have been already executed. The Figure 50 shows the results of the execution of the new

relative to the executed versions and shows that the new test

that were alive.

Figure 49. New test case selected

), because there is not sense

shows that now the

be selected. Only this test is selected because the other two test cases

shows the results of the execution of the new

the executed versions and shows that the new test

When the results window is closed, the execution

new results. The killed versions a

and not killed versions are moved to the covered versions list. Also the total mutation

scores are updated adding the new killed versions (

38

Figure 50. Results of the new test case

When the results window is closed, the execution window is update

new results. The killed versions are moved to the killed versions list and the covered

and not killed versions are moved to the covered versions list. Also the total mutation

scores are updated adding the new killed versions (Figure 51).

Figure 51. Total results updated

updated with the

re moved to the killed versions list and the covered

and not killed versions are moved to the covered versions list. Also the total mutation

5.3 Detection of equivalent versions

In the process to enrich the test suite with more test cases, it is

some versions cannot be killed because they are equivalent mutants. For example, the

Figure 52 shows the decompiled code of

absolute value function has been applied to the variable

Casilla class, before use this variable in a mathematic operation. However, as the code

shows, this variable will never have a negative value, thus the absolute value function

will not cause a different behavior of the system in any case

equivalent to the original system

Figure

In this case, this version must be mark as equivalent, which can be done simply

making click in Mark as equivalent

showed in Figure 52. Then, the mutant is mark as equivalent and the execution window

is updated (Figure 53).

39

Detection of equivalent versions

cess to enrich the test suite with more test cases, it is possible that

not be killed because they are equivalent mutants. For example, the

shows the decompiled code of the version517. In the mutated code, the

function has been applied to the variable i of the method prohibidos

, before use this variable in a mathematic operation. However, as the code

this variable will never have a negative value, thus the absolute value function

will not cause a different behavior of the system in any case, thus this version is

equivalent to the original system.

Figure 52. Decompiled code of version517

In this case, this version must be mark as equivalent, which can be done simply

Mark as equivalent check button in the bottom side of the window

. Then, the mutant is mark as equivalent and the execution window

possible that

not be killed because they are equivalent mutants. For example, the

In the mutated code, the

of the method prohibidos of

, before use this variable in a mathematic operation. However, as the code

this variable will never have a negative value, thus the absolute value function

, thus this version is

In this case, this version must be mark as equivalent, which can be done simply

e of the window

. Then, the mutant is mark as equivalent and the execution window

 40

Figure 53. The Equivalent versions list updated

5.4 Exploratory test cases

Some applications are mainly based in graphical user interfaces, thus the

designing of test cases could be hard and it is more useful to explore the system by

hand. This exploratory testing usually is done by a tester who runs the system and

interacts with the graphical user interfaces to execute functionalities. In order to apply

mutation analysis to this GUI based systems, Bacterio can store the interactions of a

user with the system and reproduce them with the mutant versions.

Exploratory test cases cannot be analyzed with Functional Qualification

mutation kind, so first, we must to configurate the Bacterio properly. Figure 54 shows

the configuration windows properly configured. In this case we have selected Flexible

Weak Mutation kind, but we could select any other kind different from Functional

Qualification. The remaining properties can be left as usual.

Figure

When Bacterio is properly

selecting Exploratory Testing

capture window appears.

Figur

To create an exploratory test case, we must click on

classes of the system in the combobox. Then we select the main class in the combobox

JFSudoku.class in our case,

41

Figure 54. Configuration for exploratory execution

When Bacterio is properly configured, we can create an exploratory test case

Exploratory Testing -> Capture in the main windows (Figure 55

Figure 55. Go to Capture exploratory tests window

exploratory test case, we must click on Load button to load all the

classes of the system in the combobox. Then we select the main class in the combobox

in our case, and click on Start Capturing button (Figure

exploratory test case

55). Then, the

button to load all the

classes of the system in the combobox. Then we select the main class in the combobox,

Figure 56).

Figure

When the Start Capturing

57). Here we can insert arguments

the sudoku application no a

version button. Then, the Sudoku application starts

store (Figure 58). When we close the application and the console window, Bacterio asks

for the name of the test case

after clicking the Ok button

configured.

42

Figure 56. Capture exploratory tests window

Start Capturing Box is clicked, the execution console appears (

arguments to the system and to the Java Virtual Machine.

the sudoku application no arguments are needed, thus we just need to click on

he Sudoku application starts and all the interactions with it are

n we close the application and the console window, Bacterio asks

for the name of the test case (in the example ExploratoryTestCase1, see

button, the test case is stored with the Bacterio’s format in the path

Figure 57. Execution console

the execution console appears (Figure

to the system and to the Java Virtual Machine. For

e needed, thus we just need to click on Run

and all the interactions with it are

n we close the application and the console window, Bacterio asks

see Figure 59), and

the Bacterio’s format in the path

 43

Figure 58. Sudoku application running

Figure 59. Saving a exploratory test case

Now, Bacterio can re-execute the captured test case with the mutant versions

that we select. In the execution window we select Captured Test radio button (Figure

60) and click on Execute Mutants button. At this point, Bacterio give us a warning

(Figure 61) because during the re-execution of captured tests, the user must not use the

keyboard and mouse because Bacterio uses them to reexecute the tests (in fact, Bacterio

move the mouse and create key and click events). If we accept, the window of Figure

62 appears, where we can select the captured tests to be run with the selected mutants.

Figure 61. Warning message before to execute a exploratory test

5.5 Parallel Execution

Bacterio can run test

is in Figure 63. It is compos

executor node and 3) Paral

44

Figure 60. Capture test button selected

. Warning message before to execute a exploratory test

Figure 62. Exploratory test selected

Parallel Execution

Bacterio can run tests and mutants in parallel. The architecture used by Bacterio

. It is composed by three kinds of nodes: 1) Local node, 2)

Parallel facade node.

. Warning message before to execute a exploratory test

and mutants in parallel. The architecture used by Bacterio

, 2) Remote

Figure

Each node of the architecture can be running in a different computer. In the local

node, the user interacts with Bacterio to execute

document: create mutants, execute mutants and view results. The mutan

the result calculation are done in the local node, only the

done in parallel.

The remote executor nodes are in

receive tests and versions, execute that tests with the versions and send back the

results.

The facade node is in

versions and tests, and of their

a distribution algorithm.

To configure the system to run in parallel, fi

executor node in a different computer using the comma

remoteExecutor.jar ip port tempFolder numberOfProcesses

computer, port an available

to store temporal data (test cases, versions, log files…) and

number of cores of the proces

default). The Figure 64 shows an example of how

45

Figure 63. Parallel execution architecture

the architecture can be running in a different computer. In the local

node, the user interacts with Bacterio to execute the functionalities describe

document: create mutants, execute mutants and view results. The mutan

lculation are done in the local node, only the execution of the test cases is

The remote executor nodes are in charge of running tests cases. Th

ive tests and versions, execute that tests with the versions and send back the

in charge of receiving from the local node all the selected

of their distribution between the remote executor nodes

re the system to run in parallel, first we have to execute each remote

executor node in a different computer using the command “java –jar

remoteExecutor.jar ip port tempFolder numberOfProcesses” where ip is the ip of the

an available port of the system, tempFolder is the path of a empty fo

to store temporal data (test cases, versions, log files…) and numberOfProcesses

processor of the computer (this parameter cat be set as1 by

shows an example of how to run a remote executor node.

the architecture can be running in a different computer. In the local

functionalities described in this

document: create mutants, execute mutants and view results. The mutant creation and

execution of the test cases is

tests cases. These nodes

ive tests and versions, execute that tests with the versions and send back the tests

all the selected

the remote executor nodes based on

rst we have to execute each remote

is the ip of the

of a empty folder

numberOfProcesses is the

or of the computer (this parameter cat be set as1 by

remote executor node.

Figure

When all the remote executor nodes are

node. This node is contained in the jar file facadeNode.jar. When we run this jar file the

window of the Figure 65 appears.

The first two parameters

node. Then we must select one of the 5 distribution algorithms

Bacterio:

1- PEDRO Algortihm (Parallel

Ordering Algorithm): this algorithm distributes

46

Figure 64. Start a remote executor node

When all the remote executor nodes are running, we must execute the f

contained in the jar file facadeNode.jar. When we run this jar file the

appears. Here we can configurate the facade node.

Figure 65. Start a facade node

parameters to configurate are the ip address and port of the facade

node. Then we must select one of the 5 distribution algorithms implemented

PEDRO Algortihm (Parallel Execution with Dynamic

Ordering Algorithm): this algorithm distributes workloads

, we must execute the facade

contained in the jar file facadeNode.jar. When we run this jar file the

ode.

ip address and port of the facade

implemented in

Dynamic Ranking and

workloads

 47

dynamically, giving in each moment a different amount of load

depending in the execution times or the previously workloads

executed by the remote executor nodes.

2- Distribute versions: this algorithm splits the number of selected

versions by the number of remote executor nodes, and gives to

each node all the test cases with a part of the versions.

3- Distribute test cases: this algorithm splits the number of selected

test cases by the number of remote executor nodes, and gives to

each node all the selected versions with a part of the selected test

cases.

4- Give versions on demand: this algorithm gives to each remote

executor node all the selected test cases and one version. When a

remote executor finishes, the facade node gives to that remote

executor node another version, until all selected versions have

been executed.

5- Give test cases on demand: this algorithm gives to each remote

executor node all the selected versions and one test case. When a

remote executor finishes, the facade node gives to that remote

executor node another test case, until all selected test cases have

been executed.

To configure the facade node we select PEDRO Algortihm.

The last necessary configuration information is the ip:port addresses of the

remote executor nodes. This addresses can be added with the Ip address and Port

address fields and the add Address button. Then with the buttons add-> and <-Remove

we can select the address that we want to connect. Finally, to start the face node we

click on Start Distributor Server (Figure 66).

When the remote executor

configurate the local node. In th

execution check button and fill the fields

Port (Figure 67). Server IP and Server Port are the address of the facade n

the executions are done in parallel.

48

Figure 66. Facade node configured

executor nodes and the face node are running, we can

configurate the local node. In the advanced configuration window, we de

and fill the fields Local IP, Local Port, Server IP

Server IP and Server Port are the address of the facade n

the executions are done in parallel.

nodes and the face node are running, we can

e advanced configuration window, we de-select local

Local IP, Local Port, Server IP and Server

Server IP and Server Port are the address of the facade node. Now all

Figure 67

5.6 Exploring the remaining options of Bacterio

This section briefly

5.6.1 Configuration

• Version folder

• Test cases folder

49

67. Local node configured to execute in parallel

Exploring the remaining options of Bacterio

This section briefly describes all the options in Bacterio.

Configuration windows

Figure 68. Basic configuration window

Version folder: Path of a folder to store temporal files.

Test cases folder: Path where the .class files of the test cases are.

: Path of a folder to store temporal files.

files of the test cases are.

• Timeout: Maximum time that a mutant version can be exec

After this time the version is considered dead. This parameter is

used to stop infinite loop produced by the mutations.

Figure

• Comparison Method

There are four comparison methods:

o toString: Using the toString declared methods.

o Field inspection

o toString/Field inspection

and for the objects that do not have a dec

the fields of the object.

50

: Maximum time that a mutant version can be exec

After this time the version is considered dead. This parameter is

used to stop infinite loop produced by the mutations.

Figure 69. Advanced configuration window

Comparison Method: Method used to determine the outputs of

There are four comparison methods:

: Using the toString declared methods.

Field inspection: Inspecting the fields of the objects.

toString/Field inspection: Using the toString declared methods,

and for the objects that do not have a declared toString, inspecting

the fields of the object.

: Maximum time that a mutant version can be executing.

After this time the version is considered dead. This parameter is

the outputs of the system.

: Using the toString declared methods,

lared toString, inspecting

 51

o Hash code fields inspection: Calculating a hash code with the

values of the fields of the objects.

o toString/Hash code: Using the toString declared methods, and for

the objects that do not have a declared toString, calculating a hash

code with the values of the fields of the object.

• Depth in field inspection: Number to references to a complex object used

when field inspection or hash code field inspections is used. This parameter

solves the problem due to loops in the references (for example, Object1.field

= Object2, Oject2.field = Object3 and Object3.field = Object1).

• Local execution: Indicates if the system is configured to execute in

remote/parallel or in local.

• Local IP: Ip of the local computer. Used in remote/parallel execution.

• Local Port: Port in the local machine. Used in remote/parallel execution.

• Server IP: Ip of the server executor. Used in remote/parallel execution.

• Server Port: Port in the server executor. Used in remote/parallel execution.

• Capture tests folder: Path where the captured test files are stored.

• Kind of mutation: Mutation technique used to determine when a mutant

version must be compared with the original versions. There are five

options:

o Flexible Weak Mutation: The mutants are compared with the

original version at the beginning and at the end the each method,

and the execution is not stopped until a difference is found.

o BB-Weak/1 Mutation: The mutants are compared with the original

version after the execution of the basic block of code with the

mutation and the execution is stopped in that point.

o BB-Weak/N Mutation: The mutants are compared with the original

version after the execution of the basic block of code with the

mutation and the execution is stopped in that point. In the case that

the basic block in into a loop, the execution is not stopped until the

end of the loop.

o String mutation: The mutants are compared with the original

version at the end of the execution.

 52

o Functional Qualification: The mutants are compared with the

original version at the end of the execution only taking into account

the test verdicts (pass or fail).

• Execution costs: This option can be selected to instrument the system

under test in order to obtain the number of execute lines by the test cases.

• Parallel execution (nº processes): This option is used to determine how

many process are launched in parallel in the same computer to run test

cases. This is useful when the computer has more than one processor. It is

not used when the parallel execution is done remotely.

5.6.2 Mutant generation window

Figure 70. Generation mutants window - Classpaths

• Classpath: This box is used to include the classpath of the system under

test (classes folders and .jar files). These elements can be added and

removed with the buttons “+” and “-“

• Apply mutation on: This box is used to specify the folders that contain the

classes to be mutated. This folders can be added or removed with the

buttons “>>” and “<<”.

Figure 71. Genertaion mutants window - mutation operators

• Interface Mutation operators: Mutations operators for interfaces that can

be selected (Swap, TEX, INC, DEC, NUL).

• Traditional mutation operators: Traditional mutation operators that can

be selected (AOR, ROR, ABS, UOI, LCR).

• Get versions: Button used to apply the mutation operators.

 53

Figure 72. Generation mutants window - Clear previous mutants button

• Clear previous mutants: Button used to remove all the temporal files

(mutants, versions, log files…) excepting results files.

Figure 73. Generation mutants window - Versions generation

• High order mutation: Technique implemented in Bacterio to create

mutant versions with more than one fault. This technique has several

options:

o Do not join mutants of the same operator: Restriction applied

during the combination of mutants that implies that two mutants

created with the same mutation operator cannot be joint.

o Do not join mutants in the same: Restriction applied during the

combination of mutants that implies that two mutants which are in

the same class cannot be joint.

o Do not join mutants of the same operator: Restriction applied

during the combination of mutants that implies that two mutants

which are in the same method cannot be joint.

o Each choice: Option to select the each choice algorithm to combine

mutants.

o Each choice first-last: Option to select the each choice first-last

algorithm to combine mutants.

 54

o Each choice random: Option to select the each choice random

algorithm to combine mutants.

o Pairwise: Option to select the pairwise algorithm to combine

mutants.

o One/fault version: Option to create versions with only one fault.

This option must be selected if we want not use the high order

mutation technique.

o Order: Number of mutants that will be insert into each version.

• Mutant sampling: Technique implemented in Bacterio to create versions

with a randomly selected sample of the total set of mutants. This technique

has one option:

o Size: Size of the sample.

Figure 74. Generation mutants window - Show results button

• Show results: Button used to show the generated mutants and versions.

5.6.3 Mutant Execution window

Figure 75. Execution mutants window - Load button

• Load: This button is used to load all the versions generated and the

executions results obtained previously.

Figure 76. Execution mutants window - Available versions

• Available versions: Four lists that show the mutant versions generated.

 55

o Alive versions: Versions that the mutated parts have not been

reached by the executed test. If any test has not been executed, only

this list contains versions.

o Alive Covered versions: Versions that the mutated parts have been

reached by at list one of the executed tests, but the output of the

version is equals to the output of the original version.

o Died versions: Versions that have been killed.

o Equivalent versions: Versions marked as equivalent.

Figure 77. Execution mutants window - Total results

• Total versions results: Table that shows the mutation scores relative to all

the generated versions and mutants.

Figure 78. Execution mutants window - Console output

• Console output: Box that shows the standard output of the test cases. It has

one option:

o Console activated: This option can be selected to capture the

standard output of the test and show it in the box. If this check

button is not selected the standard output is not captured.

 56

Figure 79. Execution mutants window - Execution options

• Execution options: This radio buttons are used to define which kind of

execution will be done. There are three options:

o Selected versions: This option executes each versions directly, thus

the user can interact directly with the mutated versions of the

system under test.

o Test case file: This option executes test cases in JUnit or UISpect4J

format.

o Captured test: This option executes exploratory tests previously

captured with Bacterio.

• Execute original: This button is used to execute only the original version of

the system under tests. This option is useful when we make changes in a

test case that can be executed previously.

• Execute mutants: this button is used to execute all the selected versions

and the original version (The original version is only executed if it was not

executed before).

• View results: This button is used to view the results of the executions.

Figure 80. Execution mutants window - Main class

• Main class: Combobox used to select the main class of the system. Used

only when the options “Selected versions” is selected.

Figure 81. Execution mutants window

• Reset Test Cases: Button used to reset the

cases. When the buttons is clicked, a windows apperas where we can select

the test cases that we want to reset.

Figure 82. Execution mutants window

• View Previous Execution Results

that are store in the temporal forder configured.

5.6.4 Test cases selection window

• Full tests: This option is used to fill the

• Version oriented: This option is used to fill the killing matrix by rows.

• Test case oriented

• Execute first with JUnit

and the original version with the JUnit framework in order to see if the test

find errors.

6 The Mutation Process With Baterio: Reducing the effort of testers.

The mutation process

used with any tool. However, in order to improve the process and reduce human effort,

the process has been adapted to Bacterio tool, taking advantage of the

tool. The “Bacterio’s mutation process” is show

57

. Execution mutants window - Reset Test Cases button

: Button used to reset the execution resutls of a set of tests

cases. When the buttons is clicked, a windows apperas where we can select

the test cases that we want to reset.

. Execution mutants window - View Previous Execution Results button

Previous Execution Results: Button used to see previous executions

that are store in the temporal forder configured.

Test cases selection window

Figure 83. Test cases selection window

: This option is used to fill the killing matrix completely.

: This option is used to fill the killing matrix by rows.

Test case oriented: This option is used to fill the killing matrix by columns.

Execute first with JUnit: This option is used to execute first the test case

and the original version with the JUnit framework in order to see if the test

The Mutation Process With Baterio: Reducing the effort of testers.

mutation process presented in Chapter I.1 is a generic process that could

used with any tool. However, in order to improve the process and reduce human effort,

the process has been adapted to Bacterio tool, taking advantage of the features of the

tool. The “Bacterio’s mutation process” is shown in Figure 84. This is the process that a

Reset Test Cases button

execution resutls of a set of tests

cases. When the buttons is clicked, a windows apperas where we can select

View Previous Execution Results button

: Button used to see previous executions

killing matrix completely.

: This option is used to fill the killing matrix by rows.

: This option is used to fill the killing matrix by columns.

: This option is used to execute first the test cases

and the original version with the JUnit framework in order to see if the test

The Mutation Process With Baterio: Reducing the effort of testers.

is a generic process that could be

used with any tool. However, in order to improve the process and reduce human effort,

features of the

. This is the process that a

tester should follow to test a system using mutation and

the process, the user will have a set of mutate

by the tests fixed.

Figure

The inputs of the process are

reach and the mutation techniques desired (mutation operators, high order mutation,

etc…) that are supported by Bacterio

In the state 1 the tester has to design test cases for the system. Any method c

be used to design tests, thus the tester can use the most

(functionalities coverage, code coverage, input data partition,…). When the test

made, in the state 2, the tester has to test the system and fix any bug found by the

58

tester should follow to test a system using mutation and he Bacterio tool. At the end of

, the user will have a set of mutate adequate test cases and all the bugs found

Figure 84. Mutation process adapted to Bacterio tool

inputs of the process are the system under test, the desired mutation

and the mutation techniques desired (mutation operators, high order mutation,

etc…) that are supported by Bacterio.

the tester has to design test cases for the system. Any method c

be used to design tests, thus the tester can use the most comfortable for him

(functionalities coverage, code coverage, input data partition,…). When the test

, the tester has to test the system and fix any bug found by the

Bacterio tool. At the end of

test cases and all the bugs found

the desired mutation score to

and the mutation techniques desired (mutation operators, high order mutation,

the tester has to design test cases for the system. Any method can

for him/her

(functionalities coverage, code coverage, input data partition,…). When the tests are

, the tester has to test the system and fix any bug found by the test

 59

cases. Then tester goes to the state 3. Here, the tester uses Bacterio. In this state the

tester has to create mutant versions of the system with the correct configuration

specified by the inputs of the process. When the versions are prepared, in the state 4,

the tester has to run all the test cases (T) with all alive versions (in this case all

versions). Then, the tester checks the mutation score reached, if it is equal or higher than

the mutation score desired, the process finish.

Otherwise, the tester must check is there are uncovered mutant versions (in other

words, mutants versions that its mutant part has no be reached by the test cases). In that

case, in state 5, the tester has to select one, decompile it and inspect it to know how is

the mutation done and how to kill that version. If there are not uncovered versions, in

state 6, the tester has to select a covered but no killed versions and inspect that in the

same way.

If the inspected mutant version is equivalent, in state 7, the tester has to mark

the version as equivalent and check again the mutation score reached. If the version is

not equivalent, in state 8, the tester has to design and implement a new test case in

order to kill the mutant version inspected in states 5 or 6, and add the new test case to

the test suite.

In state 9, the tester has to test the system with the new test case and fix any bug

found by the new test case. If there were bugs and the system had to be change to fix

they, the tester goes to the state 3 because it is necessary to create new versions of the

system. During the creation of this new mutant versions, Bacterio analyze and compare

them with the information stored about equivalent mutants detected until now. If a new

mutant version has mutations previously defined as equivalent, the new mutant version

is mark equivalent automatically in order to do not lose previous work done (this

process takes into account the modification of the system, thus the equivalent mutations

done in modified parts are removed from the base of knowledge of Bacterio).

If there were no bugs, the tester goes to state 10. Here, the tester has to execute

all alive versions (uncovered and covered but not killed) with the new test. It has not

sense re-execute the complete test suite because the old test cases would not kill any

alive version. Then, the tester has to check the mutation score reached again.

This process finish when the tester checks the mutation scores reached, and are

equal or higher than the mutation scores desired.

 60

