

E.T.S.I. de Caminos, Canales y Puertos Departamento de Ingeniería Civil y de la Edificación Área de Ingeniería e Infraestructura de los Transportes

MODELOS MATEMÁTICOS EN SISTEMAS DE TRANSPORTES

Ciudad Real 18 de octubre de 2007

LOCALIZACIÓN DE PUNTOS DE AFOROS Y ESTIMACIÓN DE VOLÚMENES DE TRÁFICO UTILIZANDO REDES BAYESIANAS

Santos Sánchez-Cambronero García-Moreno

Edificio Politécnico Avda Camilo José Cela s/n 13.071 Ciudad Real

Teléfono: 926 25 53 00 ext: 3298 santos.sanchez@uclm.es

ÍNDICE GENERAL

Introducción

 Redes Bayesianas como herramienta para el análisis de la demanda de tráfico

Conclusiones

ÍNDICE GENERAL

Introducción

 Redes Bayesianas como herramienta para el análisis de la demanda de tráfico

Conclusiones

INTRODUCCIÓN

- Líneas de investigación del Equipo de Transportes de la Escuela de Caminos de Ciudad Real:
 - Nueva formulación de un modelo de elección de rutas basada en distribuciones tipo Weibull
 - Estimación y regeneración de matrices
 - Redes Bayesianas
 - Escaneo de matrículas
 - Localización de aforos de tráfico
 - Observabilidad
 - Redes Bayesianas
 - Escaneo de matrículas

INTRODUCCIÓN

- Líneas de investigación del Equipo de Transportes de la Escuela de Caminos de Ciudad Real:
 - Nueva formulación de elección un modelo de rutas basada en distribuciones tipo Weibull
 - Estimación y regeneración de matrices
 - Redes Bayesianas
 - Escaneo de matrículas
 - Localización de aforos de tráfico
 - Observabilidad
 - Redes Bayesianas
 - Escaneo de matrículas

ÍNDICE GENERAL

Introducción

 Redes Bayesianas como herramienta para el análisis de la demanda de tráfico

Conclusiones

REDES BAYESIANAS

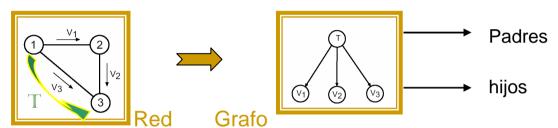
Herramienta para predecir flujos de tráfico

Herramienta para localizar puntos de aforo

REDES BAYESIANAS

Herramienta para predecir flujos de tráfico

Herramienta para localizar puntos de aforo



REDES BAYESIANAS

Redes Bayesianas como herramienta para predecir flujos de tráfico

- Definición de Red Bayesiana: par (G,P)
 - □ G: Grafo acíclico dirigido

□ P: Funciones de probabilidad condicionada

$$P = \{p(x_1 \mid \pi_1), ..., p(x_n \mid \pi_n)\}$$

$$p(x) = \prod_{i=1}^n P(x_i \mid \pi_i)$$
Prob. condicionada

Prob. conjunta

Red Bayesiana Gausiana

$$f(x) = (2\pi)^{-n/2} |\Sigma|^{-1/2} \exp\{-1/2(x-\mu)^T \Sigma^{-1}(x-\mu)\}$$

MODELOS MATEMÁTICOS EN SISTEMAS DE TRANSPORTES Ciudad Real 18 de octubre de 2007

REDES BAYESIANAS

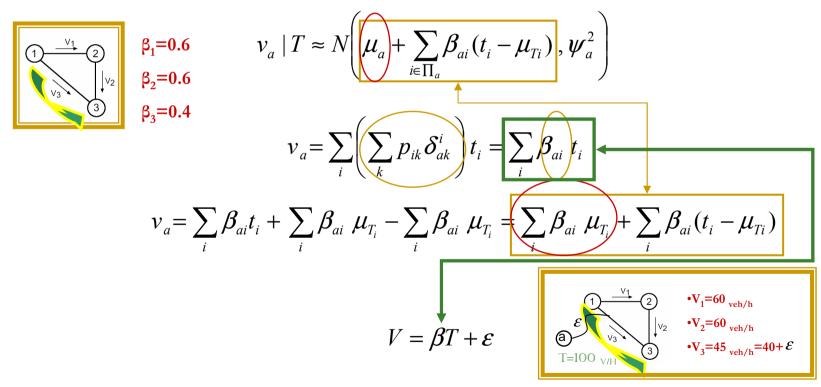
Redes Bayesianas como herramienta para predecir flujos de tráfico

- Hipotesis
 - 1. Demanda entre pares (t_i)
 - \Box Variable Normal multivariada N(μ_T , Σ_T)
 - Correlación entre la demanda de los pares

$$t_i = k_i U + \eta_i$$

- U: nivel de demanda total
- □ k_i: peso relativo de cada par
- \Box η_i : variabilidad de la demanda
- Formulación:

$$T = \begin{pmatrix} K & | & I \end{pmatrix} \begin{pmatrix} U \\ -- \\ \eta^T \end{pmatrix} \qquad \qquad \sum_{T} = \begin{pmatrix} K & | & I \end{pmatrix} \sum_{(U,\eta)} \begin{pmatrix} U \\ -- \\ \eta^T \end{pmatrix} = \sigma_U K K^T + D_{\eta}$$



REDES BAYESIANAS

Redes Bayesianas como herramienta para predecir flujos de tráfico

- Hipotesis
 - 2. Flujo en arcos (v_a)

REDES BAYESIANAS

Redes Bayesianas como herramienta para predecir flujos de tráfico

- **Hipotesis**
 - 2. Flujo en arcos (v_a)
 - Variable normal

$$v_a \mid T \approx N \left(\mu_a + \sum_{i \in \Pi_a} \beta_{ai} (t_i - \mu_{Ti}), \psi_a^2 \right)$$

Formulación

$$V = \beta T + \varepsilon$$

Matriz de medias

$$\begin{pmatrix} T \\ V \end{pmatrix} = \begin{pmatrix} I & | & 0 \\ - & + & - \\ \beta & | & I \end{pmatrix} \begin{pmatrix} T \\ -- \\ \varepsilon \end{pmatrix}$$

$$\begin{pmatrix} T \\ V \end{pmatrix} = \begin{pmatrix} I & | & 0 \\ - & + & - \\ \beta & | & I \end{pmatrix} \begin{pmatrix} T \\ -- \\ \varepsilon \end{pmatrix} \qquad E[(T,V)] = \begin{pmatrix} E(U)K \\ ----- \\ E(U)\beta K + E(\varepsilon) \end{pmatrix}$$

Matriz de varianzas-covarianzas

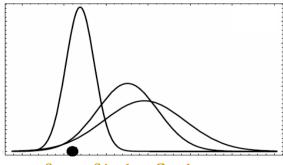
$$\Sigma(T,V) = \begin{pmatrix} I & | & 0 \\ - & + & - \\ \beta & | & I \end{pmatrix} \begin{pmatrix} \Sigma_T & | & 0 \\ - & + & - \\ 0 & | & D_{\varepsilon} \end{pmatrix} \begin{pmatrix} I & | & 0 \\ - & + & - \\ \beta & | & I \end{pmatrix}^T = \begin{pmatrix} \Sigma_T & | & \Sigma_T \boldsymbol{\beta}^T \\ --- & + & ----- \\ \boldsymbol{\beta} \Sigma_T & | & \boldsymbol{\beta} \Sigma_T \boldsymbol{\beta}^T + D_{\varepsilon} \end{pmatrix}$$
Santos Sánchez-Cambronez

REDES BAYESIANAS

Redes Bayesianas como herramienta para predecir flujos de tráfico

- Actualización del valor de las variables
 - Y y Z conjuntos de variables aleatorias con distribución normal multivariada con:

$$\mu = \begin{pmatrix} \mu_Y \\ \mu_Z \end{pmatrix} \qquad \Sigma = \begin{pmatrix} \Sigma_{YY} & \Sigma_{YZ} \\ \Sigma_{ZY} & \Sigma_{ZZ} \end{pmatrix}$$


 \Box Obtención de dato real (evidencia) Z = z se obtiene:

$$\mu_{Y|Z=z} = \mu_Y + \sum_{YZ} \sum_{ZZ}^{-1} (z - \mu_z)$$

$$\sum_{Y|Z=z} = \sum_{YY} - \sum_{YZ} \sum_{ZZ}^{-1} \sum_{ZY}$$

Nueva función de densidad conjunta

$$f(t_1, t_2, \dots, t_m, v_1, v_2, \dots, v_n) = f_{N(\mu_T, \sum_T)}(t_1, t_2, \dots, t_m) \prod_{i=1}^n f_{N(\mu_a + \sum_{i \in \Pi_a} \beta_{ai}(t_i - \mu_{T_i}), \psi_a^2)}(v_j)$$

Santos Sánchez-Cambronero

REDES BAYESIANAS

Redes Bayesianas como herramienta para predecir flujos de tráfico

Formulación BN-ME

$$\beta_{ai} = \sum_{k} p_{ik} \delta_{ak}^{i}$$

$$E[\mathbf{T}] = E[U]\mathbf{K}$$

$$E[\mathbf{V}] = E[U]\beta \mathbf{K} + E[\varepsilon]$$

$$\Sigma_{\mathbf{TT}} = \sigma_{U}^{2} \mathbf{K} \mathbf{K}^{T} + \mathbf{D} \boldsymbol{\eta}$$

$$\Sigma_{\mathbf{TV}} = \Sigma_{\mathbf{TT}} \boldsymbol{\beta}^{T}$$

$$\Sigma_{\mathbf{VT}} = \Sigma_{\mathbf{TV}}$$

$$\Sigma_{\mathbf{VV}} = \beta \Sigma_{\mathbf{TT}} \boldsymbol{\beta}^{T} + \mathbf{D} \boldsymbol{\varepsilon}$$

$$E[\mathbf{Y}|\mathbf{Z} = \mathbf{z}] = E[\mathbf{Y}] + \Sigma_{\mathbf{YZ}} \Sigma_{\mathbf{ZZ}}^{-1} (\mathbf{z} - E[\mathbf{Z}])$$

$$\Sigma_{\mathbf{Y}|\mathbf{Z} = \mathbf{z}} = \Sigma_{\mathbf{YY}} - \Sigma_{\mathbf{YZ}} \Sigma_{\mathbf{ZZ}}^{-1} \Sigma_{\mathbf{ZY}}$$

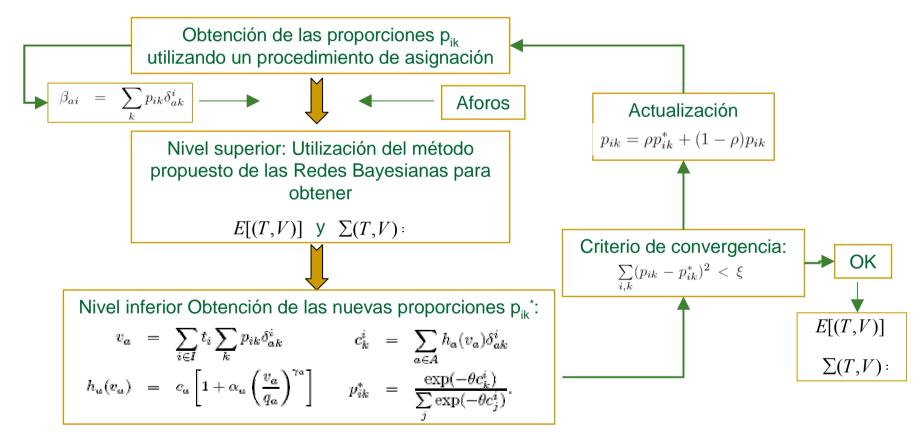
$$E[\mathbf{Z}|\mathbf{Z} = \mathbf{z}] = \mathbf{z}$$

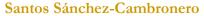
$$\Sigma_{\mathbf{Z}|\mathbf{Z} = \mathbf{z}} = \mathbf{0}$$

$$\mathbf{T} = E[\mathbf{Y}|\mathbf{Z} = \mathbf{z}]|_{(\mathbf{Y},\mathbf{Z}) = T}$$

$$\mathbf{D} \boldsymbol{\eta} = \mathrm{Diag}(vE[\mathbf{T}])$$

$$\mathbf{D} \boldsymbol{\varepsilon} = \mathrm{Diag}(\mathbf{0}),$$





REDES BAYESIANAS

Redes Bayesianas como herramienta para predecir flujos de tráfico

Formulación bi-nivel (opción 1: BN-ME y SUE)

REDES BAYESIANAS

Redes Bayesianas como herramienta para predecir flujos de tráfico

- Formulación bi-nivel (opción 2)

Alternativa al SUE: modelo de asignación con desagregación del flujo en arcos según su origen y destino

- Definición:
 - \Box $t_i \rightarrow t_{ks}$; demanda entre el origen **k** destino **s**
 - Variables desagregadas
 - v_{iiks}; flujo del nodo i al j que procede de k y va a s
 - $V_a \rightarrow W_{ii}$:

$$w_{ij} = \sum_{k,s} v_{ijks}.$$

 \Box $\beta_{ai} \rightarrow \beta_{iiks}$; proporción del par **k-s** que circula entre **i** y **j**

$$\beta_{ijks} = \frac{v_{ijks}}{t_{ks}} \iff \beta_{ai} = \sum_{k} p_{ik} \delta^{i}_{ak}$$

REDES BAYESIANAS

Redes Bayesianas como herramienta para predecir flujos de tráfico

- Hipótesis:
 - Equilibrio de Wardrop
 - Minimización de la varianza

	17	10	9
1		6 7 7	5 11
1) (5)	$ \begin{array}{c c} 1 & 1 \\ \hline 10 & 14 \end{array} $	2 - 2
	/3 6	12	18
4	4	9 <u>13</u> (1	3

 Link
 1- 2
 1- 3
 4- 2
 4- 3

 10-11
 5.0
 136.5
 248.0
 136.5

Origin-Destination

Formulación (WMV):

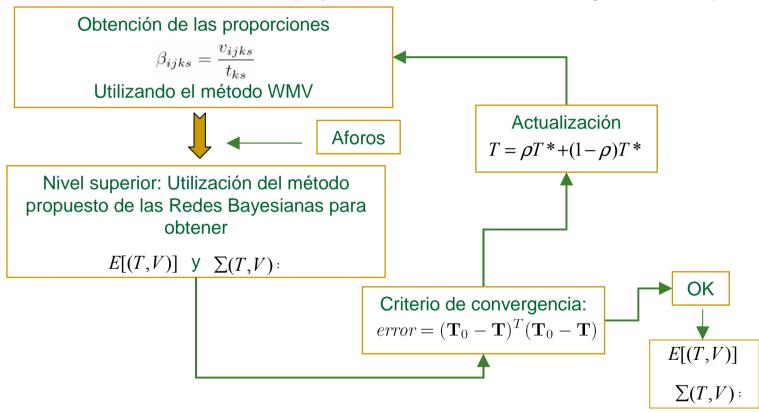
Red de Nauven-Dupuis

$$\operatorname{Minimize}_{\mathbf{v}} Z = \sum_{\ell_{ij} \in A} \int_{0}^{c_{ij} \left(\sum_{k,s} v_{ijks}\right)} c_{ij}(v) dv + \frac{\alpha}{m} \sum_{\ell_{ij} \in A} \sum_{k,s} (v_{ijks} - \mu)^{2}$$

subject to

$$t_{ks}(\delta_{ik} - \delta_{is}) = \sum_{\ell_{ij} \in \mathcal{A}} v_{ijks} - \sum_{\ell_{ji} \in \mathcal{A}} v_{jiks} \quad \forall i; \quad \forall k, s; \quad k \neq s,$$

$$\mu = \frac{1}{m} \sum_{\ell_{ij} \in \mathcal{A}} \sum_{k, s} v_{ijks},$$



REDES BAYESIANAS

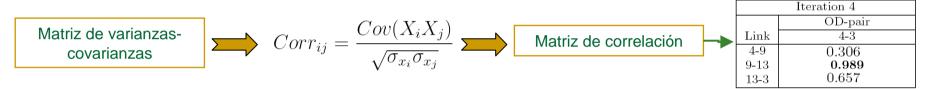
Redes Bayesianas como herramienta para predecir flujos de tráfico

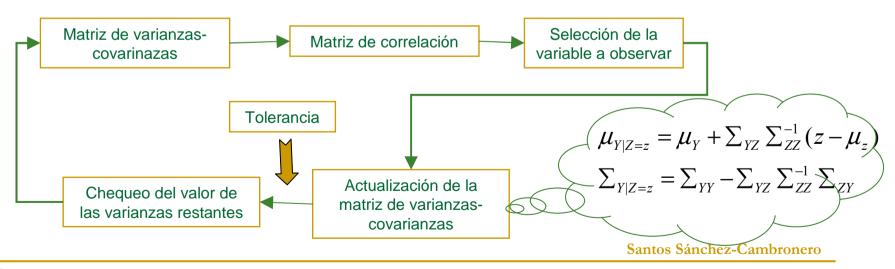
Formulación bi-nivel (opción 2: BN-ME y WMV)

REDES BAYESIANAS

Herramienta para predecir flujos de tráfico

Herramienta para localizar puntos de aforo




REDES BAYESIANAS

Localización de puntos de aforo

- Definición:
 - Método de la correlación

Formulación

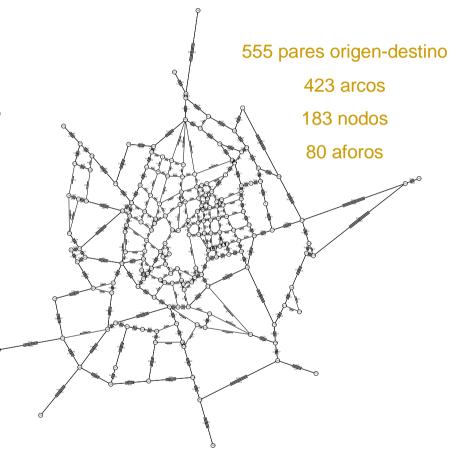
REDES BAYESIANAS

Recapitulación

Definición:

Localización de aforos

Método de la correlación


Modelo bi-nivel

ME: Red Bayesiana

Asignación: WMV

Hipótesis

Metodología

ÍNDICE GENERAL

Introducción

 Redes Bayesianas como herramienta para el análisis de la demanda de tráfico

Conclusiones

CONCLUSIONES

- Las Redes Bayesianas (BN-ME):
 - Son una buena herramienta para modelar la demanda.
 - Además de la predicción de variables, ofrece sus incertidumbres.
 - Permiten conocer la relación entre variables.
 - Permiten determinar la ubicación optima de aforos.
- El modelo de asignación propuesto (WMV):
 - Desagrega los flujos en arcos por orígenes y destinos.
 - Ofrece más información que otros modelos.
 - No necesita enumerar rutas.

CONCLUSIONES

- La aplicación bi-nivel (BN-ME y WMV):
 - Resuelve de forma eficiente el problema de estimación de matrices y asignación de la demanda a partir de aforos de tráfico.
 - Ha sido probada con éxito en redes de tamaño pequeño y mediano (Nguyen-Dupuis, Sioux Falls y Ciudad Real).

REFERENCIAS

- Castillo, E., Menéndez, J. M., and Sánchez-Cambronero, S. (2008). Traffic estimation and optimal counting location without path enumeration using Bayesian networks. Special Issue on Traffic Computational Models. Computer Aided Civil and Infrastructure Engineering, 23, 2.
- Castillo, E., Menéndez, J. M., and Sánchez-Cambronero, S. (2008). Predicting traffic flow using Bayesian Networks. Transportation Research B (In Press)

E.T.S.I. de Caminos, Canales y Puertos Departamento de Ingeniería Civil y de la Edificación Área de Ingeniería e Infraestructura de los Transportes

MODELOS MATEMÁTICOS EN SISTEMAS DE TRANSPORTES

Ciudad Real 18 de octubre de 2007

LOCALIZACIÓN DE AFOROS Y ESTIMACIÓN DE VOLÚMENES DE TRÁFICO UTILIZANDO REDES BAYESIANAS

Santos Sánchez-Cambronero García-Moreno

Edificio Politécnico Avda Camilo José Cela s/n 13.071 Ciudad Real

Teléfono: 926 25 53 00 ext: 3298 santos.sanchez@uclm.es